DRE STRUCTURAL DESIGN

1214 30th St Oakland, CA Residential Renovation and Remodel Structural Calculations

Permit Set

June 3, 2020

Prepared For:
Hourig McCray, RA - HCD Residential Lending Services
Oakland, CA

Prepared By:

Daniel Espino, SE
160 Birch St Ste B
Redwood City, CA 94062

TABLE OF CONTENTS

Description Section
Structural Narrative 1
Design CriteriaDesign Criteria2
Flat Weights 3
Wall Weights 4
WIND
Wall C\&C 5
Roof C\&C 6
SEISMIC
USGS Design Map 7
EQ (Equiv. Lat. Force,12.8) 8
Diaphragm Weight Info 9
Story Force Distribution 10
Lateral System Layout 11
Horiz Dist - Roof DIAPHA 12
Horiz Dist - Roof DIAP B 13
Horiz Dist - ROOOF-Diaph C 14
Horiz Dist - 2nd FLR - DIAPHA 15
Horiz Dist - 2nd FLR - DIAAPHB 16
Horiz Dist - 2nd FLR - Diaph C 17
Diaphragm Design - ROOF 18
Diaphragm Design - 3rd FLOOR 19
Diaphragm Design - 2nd FLOOR 20
Shearwall Layout 21
SW (Gridline B) 22
SW (Gridline C) 23
SW (Gridline C.5) 24
FTAO SW-Gridline D-2nd FIr 25
FTAO SW-Gridline D-1 st Floor 26
SW (Gridline 1) 27
SW (Gridline 3) 28
3rd FLOOR FRAMING DESIGN
3rd Floor Framing Layout 29
3rd"Floor "Framing Design 30
2nd FLOOR FRAMING DESIGN2nd Floor Framing Layout31
2nd Floor Framing Design 32
FOUNDAITON DESIGN
Foundation Layout 33
Grid 1 -Ecc. FTG Full Bearing 34
Shear Wall Footing Line 1 35
Shear Wall Footing Line B 36
Pad Ftg - A-3 37

STRUCTURAL NARRATIVE

The following calculations are for the new residential renovation located at 1214 30th St in Oakland, CA. Specifically, the calculations address the new gravity and lateral systems including the foundations.

Gravity System:
The gravity system is composed of wood framed roof and floors supported by a combination of wood joists and wood load-bearing walls. The walls are supported by shallow concrete foundations.

Lateral System:
The lateral system consists of wood flexible diaphragms spanning betweend wood shear walls.
All calculations are in accordance with the 2019 California Building Code.

DETAILED DESIGN CRITERIA

BUILDING CODE

Governing Code:	2019 California Building Code
Authority Having Jurisdiction:	City of Oakland
Local Codes or Amendments:	2019 Building Code Amendments

SEOR STAMP

Dry Soil Density $=$	100 pcf
Wet Soil Density $=$	110 pcf
Passive Soil Pressure $=$	800 pcf
Active Soil Pressure $=$	45 pcf
At-Rest Soil Pressure $=$	60 pcf
Allowable Bearing Pressure, $\mathrm{D}+\mathrm{L}=$	1500 psf
Allowable Bearing Pressure, $\mathrm{D}+\mathrm{L}+(\mathrm{E}$ or W$)=$	2000 psf
Pier Skin Friction $=$	900 psf
Coefficient of Friction $=$	0.35
Soil Spring Modulus $=$	$150 \mathrm{lbs} / \mathrm{in}$

BUILDING SYSTEM DESCRIPTION

No. Stories:	2
Footprint:	$990 \mathrm{ft}^{2}$
Floor Area:	$1980 \mathrm{ft}^{2}$
Roof Area:	$990 \mathrm{ft}^{2}$

Building Use:	Residential
Gravity System:	Wood load bearing walls and wood columns
Diaphragm System:	Plywood
Foundation System:	Shallow Foundations

DETAILED DESIGN CRITERIA

SEISMIC DESIGN PARAMETERS
UNO:

Analysis Procedure Used:	EQ (Equiv. Lat. Force, 12.8)			Section 12.6
Latitude:	37.8725 deg	Longitude:	-122.2831 deg	
Risk Category:	II	Use/Occupancy of Building Description		Table 1.5-1
$\mathrm{I}_{\mathrm{E}}=$	1.00	Importance Factor, Seismic		Table 1.5-1
$\mathrm{I}_{\mathrm{P}}=$	1.00	Importance Factor, Nonstructural Components		13.1.3
Soil Site Class =	D	Per Geotech Report, Site Class D otherwise		Table 20.3-1
$\mathrm{S}_{\mathrm{S}}=$	1.500 g	Mapped spectral response acceleration parameter		USGS
$\mathrm{S}_{1}=$	0.600 g	Mapped spectral response acceleration parameter		USGS
$\mathrm{F}_{\mathrm{a}}=$	1.2	Site coefficient		Table 11.4-1
$\mathrm{F}_{\mathrm{v}}=$	1.7	Site coefficient		Table 11.4-2
$\mathrm{S}_{\mathrm{DS}}=$	1.200 g	Design spectral response acceleration parameter		11.4-3
$\mathrm{S}_{\mathrm{D} 1}=$	0.680 g	Design spectral response acceleration parameter		11.4-4
Seismic Design Category:	D			Section 11.6
Building System, N-S:	A. BEARING WALL SYSTEMS	15. Light-framed (wood) walls sheathed with wood structural panels rated for shear resistance		Table 12.2-1
Building System, E-W:	A. BEARING WALL SYSTEMS	15. Light-framed (wood) walls sheathed with wood structural panels rated for shear resistance		Table 12.2-1
Diaphragm=	Flexible Diaphragm	Plywood		
$\rho_{(N-S)}=$	1.3	Redundancy factor, N-S		12.3.4
$\rho_{(\mathrm{E}-\mathrm{W})}=$	1.3	Redundancy factor, E-W		12.3.4
$\mathrm{R}_{(\mathrm{N}-\mathrm{S})}=$	6.50	Response modification coefficient, N-S		Table 12.2-1
$\mathrm{R}_{(\mathrm{E}-\mathrm{W})}=$	6.50	Response modification coefficient, E-W		Table 12.2-1
$\Omega_{0(\mathrm{~N}-\mathrm{S})}=$	2.50	Overstrength factor, N-S		Table 12.2-1
$\Omega_{0 \text { (E-W) }}=$	2.50	Overstrength factor, E-W		Table 12.2-1
$\mathrm{C}_{\mathrm{d}(\mathrm{N}-\mathrm{S})}=$	4.00	Deflection amplification factor, N-S		Table 12.2-1
$\mathrm{C}_{\mathrm{d}(\mathrm{E}-\mathrm{W})}=$	4.00	Deflection amplification factor, E-W		Table 12.2-1
$\mathrm{T}_{(\mathrm{N}-\mathrm{S})}=$	0.167 sec	Approximate Fundamental Period, N-S		Section 12.8.2
$\mathrm{T}_{(\mathrm{E}-\mathrm{W})}=$	0.167 sec	Approximate Fundamental Period, E-W		Section 12.8.2
$\mathrm{T}_{\mathrm{L}}=$	8 sec	Long Period Transistion Period		USGS
$\mathrm{V}_{(\mathrm{N}-\mathrm{S})}(\mathrm{ULT})=$	0.185 *W	Base Shear, N-S, LRFD		Section 12.8 or 12.14
$\mathrm{V}_{(\mathrm{N}-\mathrm{S})}(\mathrm{ASD})=$	0.129 *W	Base Shear, N-S, ASD		Section 12.8 or 12.14
$\mathrm{V}_{(\mathrm{E}-\mathrm{W})}(\mathrm{ULT})=$	0.185 *W	Base Shear, E-W, LRFD		Section 12.8 or 12.14
$\mathrm{V}_{(\mathrm{E}-\mathrm{W})}(\mathrm{ASD})=$	0.129 *W	Base Shear,E-W, LRFD		Section 12.8 or 12.14
Structural Irregularities	none			Table 12.3-1
	none			Table 12.3-2

WIND DESIGN PARAMETERS

Wind Method Used:	Directional Procedure		Chapter 27
Basic Wind Speed $=$	110 MPH		Ultimate Design Wind Speed (3 second gust)
Exposure Category:	C Figure $26.5-1 A, B$ or C		
$\mathrm{~K}_{\mathrm{zt}}=$	1.00		Open Terrain
$\mathrm{K}_{\mathrm{d}}=$	0.85	Buildings	Topographic Factor

DETAILED DESIGN CRITERIA

MATERIAL STRENGTH AND SPECIFICATIONS

CONCRETE:

Foundations, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	3000 psi	Designed for 2,500
Slab on grade, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	3000 psi	4,000 at 56 days at Interior
Structural walls, $\mathrm{f}_{\mathrm{c}}=$	3000 psi	
Beams and Columns, $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=$	3000 psi	
Fill over metal deck, $\mathrm{f}_{\mathrm{c}}=$	3000 psi	
Elevated slabs, $\mathrm{f}_{\mathrm{c}}=$	3000 psi	
Weight of normal weight concrete $=$	150 pcf	
Weight of lightweight concrete $=$	110 pcf	

CONCRETE REINFORCING:

Reinforcing Steel, $\mathrm{f}_{\mathrm{y}}=$	60 ksi	ASTM A615, Grade 60
Reinforcing Steel ties, $\mathrm{f}_{\mathrm{y}}=$	40 ksi	ASTM A615, Grade 40

DETAILED DESIGN CRITERIA

WOOD CONSTRUCTION:

$6 x$ Posts, $\mathrm{F}_{\mathrm{b}}=$	1200 psi	Douglas Fir \#1	
$6 \times$ Beam, $\mathrm{F}_{\mathrm{b}}=$	1350 psi	Douglas Fir \#1	
$4 \times$ Posts \& Beams, $\mathrm{F}_{\mathrm{b}}=$	1000 psi	Douglas Fir \#1	
2x Joists \& Rafters, $\mathrm{F}_{\mathrm{b}}=$	900 psi	Douglas Fir \#2	
2x Studs, $\mathrm{F}_{\mathrm{b}}=$	900 psi	Douglas Fir \#2	
Sheathing	$\mathrm{PS} 1 /$ PS2		
Connections	Simpson Strong-Tie		
Glued-Laminated Beam (GLB), $\mathrm{F}_{\mathrm{b}}=$	2400 psi	24F-V4 (DF/DF) simple span, 24F-V8 (DF/DF) continuous span	
Exterior GLB, $\mathrm{F}_{\mathrm{b}}=$	2000 psi	20F-V12 (AC/AC) simple span, 20F-V13 (AC/AC) continuous span	
Parallel Strand Lumber (PSL), $\mathrm{F}_{\mathrm{b}}=$	2900 psi	Grade 2.0E	
Laminated Veneer Lumber $(\mathrm{LVL}), \mathrm{F}_{\mathrm{b}}=$	2600 psi	Grade 1.9E	
Laminated Strand Lumber $(\mathrm{LSL}), \mathrm{F}_{\mathrm{b}}=$	2600 psi	Grade 1.9E	

DEFLECTION \& VIBRATION DESIGN CRITERIA

	LIVE		DEAD + LIVE		0.6 WIND		
	Finish	Design	Code Min	Design	Code Min	Design	Code Min
Roof Framing	Ceiling	$\mathrm{L} / 240$	$\mathrm{~L} / 240$	$\mathrm{~L} / 180$	$\mathrm{~L} / 180$	$\mathrm{~L} / 240$	$\mathrm{~L} / 240$
Floor Framing	-	$\mathrm{L} / 360$	$\mathrm{~L} / 360$	$\mathrm{~L} / 240$	$\mathrm{~L} / 240$	-	-
Wall Framing	Flexible	-	-	-	-	$\mathrm{L} / 120$	$\mathrm{~L} / 120$

GRAVITY / SEISMIC FLAT WEIGHT TAKEOFF (PSF)

Roof Load

CBC Live Load Category: 26. Roof: ordinary
Slope: 4.00:12

Material	Sloped	Deck	Joists	Girders	Seismic
Roofing	Y	3.0	3.0	3.0	3.0
$1 / 2^{\prime \prime}$ PLY SHTG	Y	1.7	1.7	1.7	1.7
MEP	Y		1.0	1.0	1.0
Ceiling	Y		2.2	2.2	2.2
Attic Framing	Y				10.0
2x Joists	Y			2.2	2.2
Girders (includes .5 psf for insulation)	Y				1.5
Misc.	Y	2.0	2.0	2.0	2.0
Dead Load		6.7	9.9	12.1	23.6
Dead Load - Horiz Projection		7.1	10.4	12.8	24.9
Partitions		0.0	0.0	0.0	0.0
Live Load		20.0	20.0	20.0	20.0
Live Load - Reduced $\quad \mathbf{R}_{2}=$	1.00		20.0	20.0	20.0
Total Load		27.1	30.4	32.8	44.9

GRAVITY / SEISMIC FLAT WEIGHT TAKEOFF (PSF)

Floor Load
CBC Live Load Category: 25. Residential: Other

Material	Sloped	Deck	Joists	Girders	Seismic
Flooring	N	1.0	1.0	1.0	1.0
Sheathing / Decking	N	2.5	2.5	2.5	2.5
	N			0.0	0.0
M.E.P.	N		1.0	1.0	1.0
Ceiling	N		2.2	2.2	2.2
Joists	N			2.5	2.5
Girders	N				1.5
Columns	N				0.5
Misc.	N	1.5	1.5	1.5	1.5
Dead Load		5.0	8.2	10.7	12.7
Dead Load - Horiz Projection		5.0	8.2	10.7	12.7
Partitions		0.0	0.0	0.0	0.0
Live Load		40.0	40.0	40.0	0.0
Live Load - Reduced $\quad \mathbf{R}_{2}=1.00$		40.0	40.0	40.0	0.0
Total Load		45.0	48.2	50.7	12.7

GRAVITY / SEISMIC WALL WEIGHT TAKEOFF (PSF)

Exterior Wall - 2x4 Stud

Material	Weight
2×4 @ 16 " OC	1.1
Insulation	1.0
$1 / 2 "$ plywood	1.7
Cement Plaster /Gyp	5.0
MEP	1.0
Misc	2.7
TOTAL	10.0

Interior Wall - 2x4 Stud

Material	Weight
2×4 @ 16" OC	1.1
Gyp board (two sides)	5.0
	1.0
Misc	8
TOTAL	

WIND LOADING ANALYSIS - Wall Components and Cladding Per ASCE 7-16 Code for Buildings of Any Height
 Using Part 1 \& 3: Analytical Procedure (Section 30.4 \& 30.6)

Input Data:

Wind Speed, V =	110	mph (Wind Map, Figure 26.5-1A-C)
Bldg. Classification =	II	(Table 1.5-1 Risk Category)
Exposure Category	C	(Sect. 26.7)
Ridge Height, h	32.00	ft. (hr >= he)
Eave Height, he =	32.00	ft. (he <= hr)
Building Width =	45.00	ft. (Normal to Building Ridge)
Building Length $=$	22.00	ft. (Parallel to Building Ridge)
Roof Type $=$	Gable	(Gable or Monoslope)
Topo. Factor, Kzt =	1.00	(Sect. 26.8 \& Figure 26.8-1)
Direct. Factor, Kd =	0.85	(Table 26.6)
Enclosed? (Y/N)	Y	(Sect. 28.6-1 \& Figure 26.11-1)
Hurricane Region?	N	
Component Name $=$	Wall	Girt, Siding, Wall, or Fastener)
Effective Area, $\mathrm{Ae}=$	100	$\mathrm{ft} . \wedge 2$ (Area Tributary to C\&C)

Resulting Parameters and Coefficients:

\square deg.
Mean Roof Ht., $h=32.00 \mathrm{ft}$. $(\mathrm{h}=\mathrm{he}$, for roof angle $<=10 \mathrm{deg}$.)
Wall External Pressure Coefficients, GCp:

GCp Zone 4 Pos. $=$	0.74
GCp Zone 5 Pos. $=$	0.74
GCp Zone 4 Neg. $=$	-0.83
GCp Zone 5 Neg. $=$	-0.94

(Fig. 30.4-1, GCp is reduced by 10% for roof angle $<=10$ deg.)
(Fig. 30.4-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg}$.)
(Fig. 30.4-1, GCp is reduced by 10% for roof angle $<=10 \mathrm{deg}$.)
(Fig. 30.4-1, GCp is reduced by 10% for roof angle $<=10$ deg.)
Positive \& Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):

+ GCpi Coef. $=$	0.18
(positive internal pressure)	
-0.18	(negative internal pressure)

If $z<=15$ then: $K z=2.01^{*}(15 / z g)^{\wedge}(2 / \alpha)$, If $z>15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$ (Table 30.3-1)

α	9.50	(Table 26.9-1)
$\mathrm{zg}=$	900	(Table 26.9-1)
Kh =	1.00	$(\mathrm{Kh}=\mathrm{Kz}$ evaluated at $\mathrm{z}=\mathrm{h})$

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} V^{\wedge} 2$ (Sect. 30.3.2, Eq. 30.3-1)

$$
\text { qh }=26.22 \mathrm{psf} \quad \mathrm{qh}=0.00256^{\star} K^{\star} \mathrm{K}_{2} \mathrm{t}^{\star} K d^{\star} \mathrm{V}^{\wedge} 2 \text { (qz evaluated at } z=h \text {) }
$$

Design Net External Wind Pressures (Sect. 30.4 \& 30.6):
For $\mathrm{h}<=60 \mathrm{ft} .: \mathrm{p}=\mathrm{qh}^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For $\mathrm{h}>60 \mathrm{ft}: \mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi}) \quad(\mathrm{psf})$
where: $q=q z$ for windward walls, $q=q$ for leeward walls and side walls
$\mathrm{qi}=\mathrm{qh}$ for all walls (conservatively assumed per Sect. 30.6)

Notes: 1. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
2. Width of Zone 5 (end zones), 'a' =
3.00 ft .
3. Per Code Section 30.2.2, the minimum wind load for C\&C shall not be less than 16 psf.
4. References : a. ASCE 7-10, "Minimum Design Loads for Buildings and Other Structures".
b. "Guide to the Use of the Wind Load Provisions of ASCE 7-02" by: Kishor C. Mehta and James M. Delahay (2004).

Wall Components and Cladding:

Wall Zones for Buildings with $\mathrm{h}<=60 \mathrm{ft}$.

Wall Zones for Buildings with $\mathrm{h} \boldsymbol{>} \mathbf{6 0} \mathrm{ft}$.

WIND LOADING ANALYSIS - Roof Components and Cladding

Per ASCE 7-16 Code for Bldgs. of Any Height with Gable Roof $\theta<=45^{\circ}$ or Monoslope Roof $\theta<=3^{\circ}$ Using Part 1 \& 3: Analytical Procedure (Section 30.4 \& 30.6)

Input Data:

Wind Speed, $\mathrm{V}=$	110	mph (Wind Map, Figure 26.5
Bldg. Classification =	II	(Table 1.5-1 Risk Category)
Exposure Category =	C	(Sect. 26.7)
Ridge Height, $\mathrm{hr}=$	32.00	t. (hr >= he)
Eave Height, he =	32.00	ft. (he <= hr)
Building Width $=$	22.00	ft. (Normal to Building Ridge)
Building Length $=$	45.00	ft. (Parallel to Building Ridge)
Roof Type =	Gable	Gable or Monoslope)
Topo. Factor, K	1.00	Sect. 26.8 \& Figure 26.8-1)
Direct. Factor, Kd =	0.85	Table 26.6)
Enclosed? (Y/N)	Y	(Sect. 28.6-1 \& Figure 26.11-1)
Hurricane Region?	N	
Component Name =	Joist	urlin, Joist, Decking, or Fasten
Effective Area, $\mathrm{Ae}=$	100	2 (Area Tributary to C\&C)
Overhangs? (Y/N)	Y	used, overhangs on all sides)

Resulting Parameters and Coefficients:

$\begin{aligned} & \text { Roof Angle, } \theta= 0.00 \\ & \text { deg. } \\ & \text { Mean Roof Ht., } h= 32.00 \\ & \mathrm{ft} \text {. (} \mathrm{h}=\mathrm{he} \text {, for roof angle }<=10 \mathrm{deg} \text {.) }\end{aligned}$
Roof External Pressure Coefficients, GCp:
GCp Zone 1-3 Pos. $=0.20$ (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
GCp Zone 1 Neg. $=-1.60$ (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
GCp Zone 2 Neg. $=-1.60$ (Fig. 30.4-2A, 30.4-2B, and $30.4-2 \mathrm{C}$)
GCp Zone 3 Neg. $=-0.80$ (Fig. 30.4-2A, 30.4-2B, and 30.4-2C)
Positive \& Negative Internal Pressure Coefficients, GCpi (Figure 26.11-1):
$\begin{array}{ll}+ \text { GCpi Coef. } & =0.18 \\ \text {-GCpi Coef. } & =-0.18 \\ \text { (positive internal pressure) } \\ \text { (negative internal pressure) }\end{array}$
If $z<=15$ then: $\mathrm{Kz}=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$, If $z>15$ then: $\mathrm{Kz}=2.01^{*}(\mathrm{z} / \mathrm{zg})^{\wedge}(2 / \alpha) \quad$ (Table 30.3-1)

$$
\begin{aligned}
& \alpha=9.50 \\
& \mathrm{zg}=900 \\
& \mathrm{Kh}=\begin{array}{ll}
\text { (Table 26.9-1) } \\
(\text { Table 26.9-1) }
\end{array} \\
& \hline 1.00 \\
&(\mathrm{Kh}=\mathrm{Kz} \text { evaluated at } \mathrm{z}=\mathrm{h})
\end{aligned}
$$

Velocity Pressure: $q z=0.00256^{*} K z^{*} K z t^{*} K d^{*} \mathrm{~V}^{\wedge} 2$ (Sect. 30.3.2, Eq. 30.3-1)

$$
\mathrm{qh}=26.22 \mathrm{psf} \quad \mathrm{qh}=0.00256^{*} \mathrm{Kh}^{*} \mathrm{Kzt}^{*} K d^{*} V^{\wedge} 2(\mathrm{qz} \text { evaluated at } \mathrm{z}=\mathrm{h})
$$

Design Net External Wind Pressures (Sect. 30.4 \& 30.6):
For $\mathrm{h}<=60 \mathrm{ft} .: \mathrm{p}=\mathrm{qh}^{*}((\mathrm{GCp})-(+/-\mathrm{GCpi}))$ (psf)
For $\mathrm{h}>60 \mathrm{ft}: \mathrm{p}=\mathrm{q}^{*}(\mathrm{GCp})-\mathrm{qi}^{*}(+/-\mathrm{GCpi})$ (psf)
where: $\mathrm{q}=\mathrm{qh}$ for roof
qi $=$ qh for roof (conservatively assumed per Sect. 30.6)

Notes: 1. (+) and (-) signs signify wind pressures acting toward \& away from respective surfaces.
2. Width of Zone 2 (edge), 'a' =
3. Width of Zone 3 (corner), 'a' =

3.00	ft.
3.00	ft.

4. For monoslope roofs with $\theta<=3$ degrees, use Fig. 30.4-2A for 'GCp' values with 'qh'.
5. For buildings with $h>60$ ' and $\theta>10$ degrees, use Fig. 30.6-1 for 'GCpi' values with 'qh'.
6. For all buildings with overhangs, use Fig. 30.4-2B for 'GCp' values per Sect. 30.10.
7. If a parapet $>=3^{\prime}$ in height is provided around perimeter of roof with $\theta<=10$ degrees, Zone 3 shall be treated as Zone 2.
8. Per Code Section 30.2.2, the minimum wind load for C\&C shall not be less than 16 psf .
9. References : a. ASCE 7-02, "Minimum Design Loads for Buildings and Other Structures".
b. "Guide to the Use of the Wind Load Provisions of ASCE 7-02"
by: Kishor C. Mehta and James M. Delahay (2004).

Roof Zones for Buildings with $\mathrm{h}<=60 \mathrm{ft}$.
(for Gable Roofs $<=45^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

Roof Zones for Buildings with $\mathrm{h}>60 \mathrm{ft}$. (for Gable Roofs $<=10^{\circ}$ and Monoslope Roofs $<=3^{\circ}$)

SEISMIC

USGS DESIGN MAP SUMMARY REPORT

ASCE Seismic Base Shear				
Lic. \#: KW-06012032 DRE Structural Design				
DESCRIPTIO 1214 30th St Oakland, CA				
1214 30th St Oakland, CA				
Risk Category		Calculations per ASCE 7-16		
Seismic Importance Factor	$=$		ASCE 7-16, Page 5, Table 1.5-2	
				ASCE 7-16 11.4.2
Max. Ground Motions, 5\% Damping		Latitude	37.823 deg North	
$\mathrm{S}_{\mathrm{S}}=1.50 \mathrm{~g}, 0.2 \mathrm{sec}$ response		Longitude	122.283 deg West	
$\mathrm{S}_{1}=$	$0.60 \mathrm{~g}, 1.0 \mathrm{sec}$ response			

Site ClassificatiotD" : Shear Wave Velocity 600 to $1,200 \mathrm{ft} / \mathrm{sec}$		$=$	D	ASCE 7-16 Table 20.3-1
Site Coefficients Fa \& Fv (using straight-line interpolation from table val	$\begin{aligned} & \mathrm{Fa} \\ & \mathrm{Fv} \end{aligned}$	$=$ $=$	$\begin{aligned} & 1.20 \\ & 1.50 \end{aligned}$	ASCE 7-16 Table 11.4-1 \& 11.4-2
Maximum Considered Earthquake Acceleral	$\begin{aligned} & \mathrm{S}_{\mathrm{MS}}=\mathrm{Fa} \cdot \mathrm{Ss} \\ & \mathrm{~S}_{\mathrm{M} 1}=\mathrm{FV} \cdot \mathrm{~S} 1 \end{aligned}$	$=$ $=$	$\begin{aligned} & 1.800 \\ & 0.900 \end{aligned}$	ASCE 7-16 Eq. 11.4-1 ASCE 7-16 Eq. 11.4-2
Design Spectral Acceleration	$\begin{aligned} & \mathrm{S}_{\mathrm{DS}}=\mathrm{S}_{\mathrm{MS}} \cdot 2 / 3 \\ & \mathrm{~S}_{\mathrm{D} 1}=\mathrm{S}_{\mathrm{M} 1} \cdot 2 / 3 \end{aligned}$	$=$ $=$	$\begin{aligned} & 1.200 \\ & 0.600 \end{aligned}$	ASCE 7-16 Eq. 11.4-3 ASCE 7-16 Eq. 11.4-4
Seismic Design Category		=	D	E 7-16 Table 11.6-1\&-2

DSA Project? $\quad \mathrm{NO}$

Table 20.3-1, Default = D
Response Spectral Acc. $(0.2 \mathrm{sec}) \mathrm{Ss}=\mathbf{1 . 5 0 0} \mathrm{g} \quad=150.00 \% \mathrm{~g}$
$\underline{\text { Response Spectral Acc. }(1.0 \mathrm{sec}) \mathrm{S} 1=\mathbf{0 . 6 0 0} \mathrm{g}} \quad=60.00 \% \mathrm{~g}$
Site Coefficient $F_{a}=1.200$
Site Coefficient $F_{v}=1.700$
$=1.800$
Max Considered Earthquake Acc. $S_{M S}=F_{a} . S_{s}$
Max Considered Earthquake Acc. $\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \cdot \mathrm{S}_{1} \quad=1.020$
@ 5% Damped Design $S_{D S}=2 / 3\left(S_{M S}\right) \quad=1.200$

$$
S_{D 1}=2 / 3\left(S_{M 1}\right) \quad=0.680
$$

Building Risk Categories
Redundancy Factor
Design Category Consideration:
Seismic Design Category for 0.1 sec
Seismic Design Category for 1.0 sec
$\mathrm{S} 1<.75 \mathrm{~g}$

Figure 22-1, 22-3, 22-5, and 22-6
Figure 22-2, 22-4, 22-5, and 22-6
Table 11.4-1
Table 11.4-2
(11.4-1)
(11.4-4)

Table 1.5-1
Section 12.3.4
Section 12.3
Table 11.6-1
Table 11.6-2
Section 11.6

Since $\mathrm{Ta}<.8 \mathrm{Ts}$ (see below), $\mathrm{SDC}=\quad \mathrm{D} \quad$ Control (exception of Section 11.6 does not apply)
IBC - Comply with Seismic Design Category D
IRC - Seismic Design Category $=\mathrm{E} \quad$ T-R301.2.2.1.1
12.8 Equivalent lateral force procedure

Seismic Force Resisting System: A. BEARING WALL SYSTEMS
T-12.2-1
15. Light-framed (wood) walls sheathed with wood structural panels rated for shear resistance

$$
\mathrm{C}_{\mathrm{t}}=0.02 \quad \mathrm{x}=0.75 \quad \mathrm{~T} \quad \mathrm{~T}-12.8-2
$$

Building ht. $\mathrm{H}_{\mathrm{n}}=35 \mathrm{ft} \quad$ Limited Building Height $(\mathrm{ft})=65$

$$
\mathrm{C}_{\mathrm{u}}=1.4 \quad \text { for } \mathrm{S}_{\mathrm{D} 1} \text { of } \quad 0.680 \mathrm{~g} \quad \text { Table 12.8-1 }
$$

Approx Fundamental period, $\mathrm{T}_{\mathrm{a}}=\mathrm{C}_{\mathrm{t}}\left(\mathrm{h}_{\mathrm{n}}\right)^{\mathrm{x}} \quad=0.288 \quad 12.8-7 \quad \mathrm{~T}_{\mathrm{L}}=8 \mathrm{Sec}$
Calculated T shall not exceed \leq Cu.Ta $\quad=0.403$
$0.8 \mathrm{Ts}=0.8\left(\mathrm{~S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{DS})}=0.45\right.$
Is structure Regular $\boldsymbol{\&} \leq \mathbf{5}$ stories ? \quad Yes
Response Spectral Acc. 0.2 sec) $\mathrm{S}_{\mathrm{s}}=1.500 \mathrm{~g}$
Control (exception of Section 11.6 does not apply)
$F_{a}=1.00$
@ 5\% Damped Design $S_{D S}=2 / 3\left(F_{a} \cdot S_{s}\right)$
$=1.200 \mathrm{~g}$
11.4-3

Response Modification Coef. $\mathrm{R}=\quad 6.5$
Table-12.2-1
Over Strength Factor $\Omega_{0}=2.5$
foot note g
Importance factor I = 1
Table 1.5-1
Seismic Base Shear $\mathrm{V}=\quad C_{s} W$
$\mathrm{C}_{\mathrm{s}}=\frac{\mathrm{S}_{\mathrm{DS}}}{R / I}=0.185$
(12.8-2)
or need not to exceed, $C_{s}=\frac{S_{D 1}}{(R / I) \cdot T}=0.625 \quad$ For $T \leq T_{L}$
or $C_{s}=\frac{S_{D 1} T_{L}}{T^{2}(R / I)} \quad N / A \quad$ For $T>T_{L}$
$\begin{array}{rlrl}\mathrm{C}_{\mathrm{s}} \text { shall not be less than } 044 \mathrm{~S}_{\mathrm{DS}} \mathrm{I} & = & 0.053 & 0.01 \\ \text { Min } \mathrm{C}_{\mathrm{s}} & = & 0.5 \mathrm{~S}_{1} \mathrm{I} / \mathrm{R} & =0.046 \quad \text { For } \mathrm{S}_{1} \geq 0.6 \mathrm{~g}\end{array}$
(12.8-5)
(12.8-6)

Design base shear V (ULT) $=0.185 \mathrm{~W}$
Design base shear V (ASD)= 0.129 W
Control Insert into appropriate load combinations

Deflection Amplification factor $C_{d}=4$
Use with ASCE 12.8.6, 12.8.7, and 12.9.2

North-South Diaphragm Weight Information:

| | Area | Diaphragm
 Unit Weight
 (psf) | Diaphragm
 Weight
 (kips) | Wall
 (sq ft) | Wall
 (psf) | Wall
 Trib Width
 (ft) | Wall
 Length
 (ft) | Level
 Weight
 (kips) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Weight
 (kips) |
| :---: |\quad| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Roof | 990 | 24.9 | 25 | 10 | 4.0 | 100.0 | 4 |
| 2nd | 990 | 12.7 | 13 | 10 | 8.0 | 100.0 | 8 |

East-West Diaphragm Weight Information:

Level	$\begin{gathered} \text { Area } \\ (\mathrm{sq} \mathrm{ft}) \\ \hline \end{gathered}$	Diaphragm Unit Weight (psf)	Diaphragm Weight (kips)	\qquad	$\begin{gathered} \text { Wall } \\ \text { Trib Width } \\ (\mathrm{ft}) \\ \hline \hline \end{gathered}$	Wall Length (ft)	Wall Weight (kips)	Level Weight (kips)
Roof	990	24.9	25	10	4.0	88.0	4	28
2nd	990	12.7	13	10	8.0	88.0	7	19.6
Σ			37				11	47.8

ROOF PLAN/2ND FLOOR

Seismic Story Force Distribution based on ASCE 7-16

$S_{\text {DS }}=1.200$		Ta Period	12.8-7)	167	$\mathrm{k}=1.0$		(12.8.3)
$\mathrm{I}_{\text {seismic }}=1.00$		rho $(\rho)=1.3$					
ASD OR ULT? ASD							
$V($ ASD $)=0.129$		Base V (ASD) $=6.4$					
Story Force Vertical Distribution (ASCE 7-16 12.8.3)							
Level	$\mathbf{w}_{\mathbf{x}}$	h_{x} (ft.)	$h_{x}{ }^{\text {K }}$	$w_{x} h_{x}{ }^{\text {k }}$	Fx, ASD	Fx w/rho, ASD	$\mathbf{C v}_{\mathbf{x}} \%$
Roof	28.6	16.0	16.0	458	4.678	6.1	73.6
2nd Floor	20.6	8.0	8.0	165	1.681	2.2	26.4
Σ	49.2			623	6.4	8.3	
Vertical Diaphragm Distribution (ASCE 7-16 12.10.1.1)							
Level	$\mathbf{w}_{\mathbf{x}}$	$\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{x}}$	F_{x}	$\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{x}}$	Fpx, ASD		
Roof	29	29	4.7	4.68	6.3	<--Fpmin	
2nd Floor	20.6	49	2.2	6.9	4.5	<--Fpmin	
Σ	49.2		6.9				

Shearwall Layout - 2nd Floor

For Design:

1. Since 3rd floor is sheathed with plywood, assume flexible diaphragm.
2. Distribute seismice forces by tributary area
3. See above for shear wall layout.
4. Assume roof diaphragm to be a series of simply supported beams
5. Distribute Forces by diapragm :

Base Shear	$=$	6.1	
Fpx	$=$	6.3	
kips (floor base shear)			
Roof Area	$=$	990	sqaure feet
v	$=$	6.14	psf force)
$V=$	6.32		psf (diapry force)
V			

Story Force:
Diaphram A $=352$ sqaure feet $--------->$ Vdiap $(a)=2162$ lbs
Diaphram $B=319$ sqaure feet $--------\gg \operatorname{Vdiap}(b)=1959$ lbs
Diaphram C $=319$ sqaure feet $--------->\operatorname{Vdiap}(b)=1959$ lbs
Diaprhagm Force:
Diaphram A = 352 sqaure feet ----------> $\operatorname{Vdiap}(a)=2223$ lbs
Diaphram B $=319$ sqaure feet $--------\gg \operatorname{Vdiap}(b)=2015$ lbs
Diaphram C $=319$ sqaure feet $--------->$ Vdiap(b) $=2015$ lbs

Shearwall Layout - 1st Floor

For Design:

1. Since 2nd floor is sheathed with plywood, assume flexible diaphragm.
2. Distribute seismice forces by tributary area
3. See above for shear wall layout.
4. Assume roof diaphragm to be a series of simply supported beams
5. Distribute Forces by diapragm :

Base Shear	$=$	2.2	
Fpx	$=$	4.5	
kips (roof base shear)			
Roof Area	$=$	990	
vqaane feet			
	$=$	2.21	psf (story force)
v	$=$	4.54	psf (diapragm force)

STORY FORCE

Diaphram A =	352	sqaure feet ----------> Vdiap(a) =	777
Diaphram B =	319	sqaure feet ----------> Vdiap(b) =	704
Diaphram C =	319	Vdiap(b)	704

DIAPHRAGM FORCE

Diaphram $A=352$ sqaure feet ----------> Vdiap(a) $=1598$ lbs
Diaphram B = 319 sqaure feet ----------> Vdiap(b)= 1448 lbs

Diaphram $C=319$ sqaure feet $-------->\operatorname{Vdiap}(b)=1448$ lbs

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level		North/South		East/West	
	$F_{X}(A S D)$	$F_{P X}(A S D)$	$F_{X}(A S D)$	$F_{P X}(A S D)$	
Roof	2.2 kips	2.2 kips	2.2 kips	2.2 kips	352
2nd floor	x	x	x	x	x
2nd Floor	x	x	x	x	x
	x	x	x	x	x

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level		North/South		East/West	
	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{PX}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	F_{PX} (ASD)	
Roof	2.0 kips	2.0 kips	2.0 kips	2.0 kips	319
3rd Floor - Diaph B	x	x	x	x	x
2nd Floor	x	x	x	x	x
	x	x	x	x	x

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level	North/South		East/West		Area (sf)
	$F_{X}(A S D)$	$F_{P X}(A S D)$	$F_{X}(A S D)$	$F_{P X}(A S D)$	
Roof	2.0 kips	2.0 kips	2.0 kips	2.0 kips	319
3rd Floor	x	x	x	x	x
2nd Floor	x	x	x	x	x
	x	x	x	x	x

Seismic Loading Level: Roof Loading Direction: North/South			$\begin{aligned} \mathbf{F}_{\mathrm{X}} & = \\ \mathbf{F}_{\mathrm{PX}} & = \end{aligned}$		2.0	$\begin{aligned} & \text { kips (ASD) } \\ & \text { kips (ASD) } \\ & \mathrm{ft}^{2} \end{aligned}$			
					2.0				
			Total Level Area $=$ $\%$ of Total $\mathrm{F}_{\mathrm{x}}=$		$\begin{gathered} 319 \\ 50 \end{gathered}$				
Gridline: C .5 \& D									
Span Type	Diaphragm Span	Length (ft)	Width (ft)	Area (ft^{t})	Story Force (kips)	Diaphragm Force (kips)	Distributed Load (plf)	Diaphragm Shear (plf)	TC Couple (lbs)
Simple	C. 5 D	10.0	22.0	319	0.98	1.01	201	46	114
					0.98	1.01			

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level	North/South		East/West		Area (sf)
	F_{x} (ASD)	$\mathrm{F}_{\text {PX }}$ (ASD)	F_{X} (ASD)	F_{PX} (ASD)	
Roof	x	x	x	x	x
3rd Floor	x	x	x	x	x
2nd Floor - Diaph A	0.8 kips	1.6 kips	0.8 kips	1.6 kips	352
	x	x	x	x	x

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level	North/South		East/West		Area (sf)
	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{PX}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	F_{PX} (ASD)	
Roof	x	x	x	x	x
3rd Floor	x	x	x	x	x
2nd Floor - Diaph B	0.7 kips	1.4 kips	0.7 kips	1.4 kips	319
	x	x	x	x	x

Seismic Loading Level: 2nd Floor - Diaph B Loading Direction: North/South				$\mathbf{F}_{\mathrm{X}}=$$\mathbf{F}_{\mathrm{PX}}=$Total Level Area $=$$\%$ of Total $\mathrm{F}_{\mathrm{x}}=$		$\begin{gathered} \hline 0.7 \\ 1.4 \\ 319 \\ 50 \end{gathered}$	$\begin{aligned} & \text { kips (ASD) } \\ & \text { kips (ASD) } \\ & \mathrm{ft}^{2} \end{aligned}$			
Gridline: C \& C. 5										
Span Type	Diap	Span	Length	Width	Area	Story Force	Diaphragm Force	Distributed Load	Diaphragm Shear	TC Couple
			(ft)	(ft)	($\mathrm{ft}^{\text {t }}$)	(kips)	(kips)	(plf)	(plf)	(lbs)
Simple	C	C. 5	10.0	22.0	319	0.35	0.72	72	33	41
						0.35	0.72			

Seismic Loading Level: 2nd Floor - Diaph B Loading Direction: East/West			$\begin{gathered} \mathbf{F}_{\mathrm{X}} \\ \mathbf{F}_{\mathrm{P}} \end{gathered}$		0.7	$\begin{aligned} & \text { kips (ASD) } \\ & \text { kips (ASD) } \\ & \mathrm{ft}^{2} \end{aligned}$			
					1.4				
			Total Level Area $=$ $\%$ of Total $\mathrm{F}_{\mathrm{x}}=$		$\begin{gathered} 319 \\ 50 \end{gathered}$				
Gridline: 1 \& 3									
Span Type	Diaphragm Span	Length	Width	Area	Story Force	Diaphragm Force	Distributed Load	Diaphragm Shear	$\begin{gathered} \text { TC } \\ \text { Couple } \end{gathered}$
		(ft)	(ft)	($\mathrm{ft}^{\text {t }}$)	(kips)	(kips)	(plf)	(plf)	(lbs)
Simple	3	22.0	10.0	319	0.35	0.72	33	72	199
					0.35	0.72			

IBC2018, ASCE 7-16 CHAPTER 11, 12, 13 SEISMIC DESIGN CRITERIA

Level	North/South		East/West		Area (sf)
	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{PX}}(\mathrm{ASD})$	$\mathrm{F}_{\mathrm{X}}(\mathrm{ASD})$	F_{PX} (ASD)	
Roof	X	x	X	x	x
3rd Floor	x	x	x	x	x
2nd Floor	0.7 kips	1.4 kips	0.7 kips	1.4 kips	319
	x	x	x	x	x

Seismic Loading Level: 2nd Floor Loading Direction: East/West			$\begin{aligned} \mathbf{F}_{\mathrm{X}} & = \\ \mathbf{F}_{\mathrm{PX}} & \end{aligned}$		0.7	$\begin{aligned} & \text { kips (ASD) } \\ & \text { kips (ASD) } \\ & \mathrm{ft}^{2} \end{aligned}$			
					1.4				
			Total Level Area $=$ $\%$ of Total $\mathrm{F}_{\mathrm{x}}=$		$\begin{gathered} 319 \\ 50 \end{gathered}$				
Gridline: 1 \& 3									
Span Type	Diaphragm Span	Length (ft)	Width (ft)	Area (ft^{t})	Story Force (kips)	Diaphragm Force (kips)	Distributed Load (plf)	Diaphragm Shear (plf)	TC Couple (lbs)
Simple	13	22.0	10.0	319	0.35	0.72	33	72	199
					0.35	0.72			

ROOF DIAPHRAGM A DESIGN

Diaphragm Design:

N-S Direction

Roof
Trib Area (ft2)
Force (lbs) Diap Length Diaph Shears Line A 160 1.0 22.0 Line C 160 1.0 22.0 319 2.0

E-W Direction

Roof

	Trib Area (ft2)	Force (lbs)	Diaph Length	Diaph Shears
Line 1	159.5	1.007	10.0	100.732
Line 3	159.5	1.01	10.0	100.732
Σ	319	2.0		

Since diaphragm shears are small, provide 15/32" CDX plywood with 8d at 6" OC (BN) and 8d at 12" OC (field)

2ND FLOOR DIAPHRAGM A DESIGN

Diaphragm Design:

N-S Direction
2nd Floor
Trib Area (ft2)
Line A 225 \#N/A 30 Line C 225 \#N/A 30 \#N/A \#N/A

E-W Direction

Since diaphragm shears are small, provide 15/32" CDX plywood with 8d at 6" OC (BN) and 8d at 12" OC (field)

2nd FLOOR SHEARWALL LAYOUT:

Shearwall Design:

N-S Direction
E-W Direction

2nd Floor
Trib Area (ft2)
Force (lbs)
Line B
Line C
Line C.5
Line D

Notes:
The forces above are allowable stress design.
The forces above assumes rho $=1.3$

1st FLOOR SHEARWALL LAYOUT:

Shearwall Design:

N-S Direction		
2nd Floor		
	Trib Area (ft2)	Force (lbs)
Line B		388.43
Line C		740.45
Line C. 5		704.04
Line D		352.02
	0	2184.9

E-W Direction

Notes:

The forces above are allowable stress design.
The forces above assumes rho = 1.3

SHEARWALL DESIGN (GRIDLINE B)

DSA? NO					
UPPER FLOOR:					
DIRECTION: North-South					
WALL LINE: Line B SEISMIC Sds= 1.2					
Total Wall Line Shear (ASD) $=\quad \mathrm{V}(\mathrm{lb})=1081$					
Wall Lengths $=\quad \mathrm{L}(\mathrm{ft})=5$					
Total Wall Length $=\mathrm{L}$ total $(\mathrm{ft})=$.					
Minimum Wall Length $=\mathrm{L}$ min. $(\mathrm{ft})=$.					
Wall Height $=\quad \mathrm{h}(\mathrm{ft})=$.					
Tributary Dead Load $=\quad$ DL $(\mathrm{psf})=12.8$					
Tributary Width $=\quad$ TW $(\mathrm{ft})=$.					
Wall Dead Load $=$ WDL $(\mathrm{psf})=8.0$					
Total Dead Load at Wall $=\mathrm{W}_{\text {DL }}(\mathrm{plf})=191.5$					
Uplift Force at Tie Down for "L" noted above = 1903					
Minimum Holdown for each "L" noted above = HDU2					
$\begin{array}{rcc} \text { Wall shear per lineal foot }= & v(\text { plf })=V / L= & 216 \\ \text { Nail Size }=10 \mathrm{~d} & \text { Ply Grade }=C D / \text { OSB } \\ \hline \end{array}$					
Use SW CD / OSB w/ 10d@ 6"o.c.	(Capacity =	310 plf)	DCR =	0.70	

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*} \mathrm{Lmin}\right)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*} \operatorname{Lmin} 2 / 2\right]\right\} /\left(\operatorname{Lmin}-1^{\prime}\right)=1903$ Holdown Type = HDU

Use: HDU2	(Capacity $=3075 \mathrm{lb})$	DCR $=0.62$
Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $)+\left[(1.0+.14 \mathrm{Sds})^{*} \mathrm{wDL}^{*}\right.$ Lmin2/2] $/($ Lmin $)=2289$		

LOWER FLOOR:

Total Wall Line Shear (ASD)=

$$
\text { SEISMIC } \quad \text { Sds= } 1.2
$$

Wall Lengths =
$V(\mathrm{lb})=388$

$\mathrm{L}(\mathrm{ft})=$| 5 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Total Wall Length =

L total (ft.) $=5$
Minimum Wall Length =
L min. (ft.) $=5$
Wall Height $=\quad h(f t)=$.
Tributary Dead Load $=\quad$ DL $(p s f)=12.8$
Tributary Width =
TW (ft.) $=10$
Wall Dead Load $=$ WDL $(p s f)=8.0$
Total Dead Load at Wall $=\quad \mathrm{w}_{\mathrm{DL}}($ plf $)=191.5$

Uplift Force at Tie Down for "L" noted above $=$| 4584 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDU5 | | | | | | | | |

Minimum Holdown for each "L" noted above $=$| Ple |
| :--- |

Wall shear per lineal foot $=\quad v($ plf $)=V / L=\quad 294 \quad$ <-including shear from wall above
Nail Size =10d Ply Grade = CD / OSB

| Use SW CD/OSB w/10d@ 6"0.c. | (Capacity $=310$ plf) | DCR $=0.95$ |
| :--- | :--- | :--- | :--- |
| | | |

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2] $/\left(\operatorname{Lmin}-1^{\prime}\right)=4584$
Holdown Type = HDU

| Use: HDU5 (Capacity $=5645 \mathrm{lb}) \quad$ DCR $=0.81$ |
| :---: | :---: | :---: |

Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $)+\left[(1.0+.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2]\} / (Lmin)= 5199

SHEARWALL DESIGN (GRIDLINE C)

DSA? NO					
UPPER FLOOR:					
DIRECTION: North-South					
WALL LINE: Grid C SEISMIC Sds=	1.2				
Total Wall Line Shear (ASD) $=\quad \mathrm{V}(\mathrm{lb})=2061$					
Wall Lengths $=\quad \mathrm{L}(\mathrm{ft})=9$					
Total Wall Length $=\mathrm{L}$ total $(\mathrm{ft})=$.					
Minimum Wall Length $=\mathrm{L}$ min. $(\mathrm{ft})=$.					
Wall Height $=\quad \mathrm{h}(\mathrm{ft})=$.					
Tributary Dead Load $=\quad \mathrm{DL}(\mathrm{psf})=10.0$					
Tributary Width $=\quad$ TW $(\mathrm{ft})=$.					
Wall Dead Load $=$ WDL $(\mathrm{psf})=8.0$					
Total Dead Load at Wall $=\mathrm{w}_{\text {DL }}(\mathrm{plf})=164$					
Uplift Force at Tie Down for "L" noted above $=1702$					
Minimum Holdown for each "L" noted above = HDU2					
Wall shear per lineal foot $=$ $v($ plf $)=V / L=$ Nail Size $=10 d$ Ply Grade $=C D /$ OSB					
Use SW CD / OSB w/ 10d@ 6"o.c.	(Capacity =	310 plf)	DCR =	0.74	

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*} \mathrm{Lmin}\right)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*} \operatorname{Lmin} 2 / 2\right]\right\} /\left(\operatorname{Lmin}-1^{\prime}\right)=1702$ Holdown Type = HDU

Use: HDU2	(Capacity $=3075 \mathrm{lb})$	DCR $=0.55$
Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $\left.)+\left[(1.0+.14 \mathrm{Sds})^{*} \mathrm{wDL}^{*} \mathrm{Lmin} 2 / 2\right]\right\} /($ Lmin $)=2694$		

LOWER FLOOR:

Total Wall Line Shear (ASD)=

SEISMIC	Sds $=1.2$
V (lb)	$=740$
$\mathrm{~L}(\mathrm{ft})$	$=$

L total (ft.) $=9$
Minimum Wall Length $=L \min .(f t)=$.
Wall Height $=\quad h(f t)=$.
Tributary Dead Load $=\quad$ DL $(p s f)=10.0$
Tributary Width =
TW (ft.) $=10$ Wall Dead Load $=$ WDL $(p s f)=8.0$
Total Dead Load at Wall $=\quad W_{\text {DL }}$ (plf) $=164$

Uplift Force at Tie Down for "L" noted above = | 4145 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDU4 | | | | | | | | |

Wall shear per lineal foot $=\quad v($ plf $)=V / L=\quad 311 \quad$ <-including shear from wall above Nail Size = 10d

Ply Grade = CD / OSB

| Use SW $C D / O S B ~ w / 10 d @ 4 " 0 . c . ~$ | (Capacity $=460$ plf) | DCR = 0.68 |
| :--- | :--- | :--- | :--- |
| | | |

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2] $/\left(\operatorname{Lmin}-1^{\prime}\right)=4145$ Holdown Type = HDU

| Use: HDU4 (Capacity $=4565 \mathrm{lb}) \quad$ DCR $=0.91$ |
| :---: | :---: | :---: |

Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $)+\left[(1.0+.14 S d s)^{*} w D L^{*}\right.$ Lmin2/2]\} / (Lmin)= 6046

SHEARWALL DESIGN (GRIDLINE C.5)

DSA? NO					
UPPER FLOOR:					
DIRECTION: North-South					
WALL LINE: Grid C. 5 SEISMIC Sds=	1.2				
Total Wall Line Shear (ASD) $=\quad \mathrm{V}(\mathrm{lb})=2061$					
Wall Lengths $=\quad \mathrm{L}(\mathrm{ft})=9$					
Total Wall Length $=\mathrm{L}$ total $(\mathrm{ft})=$.					
Minimum Wall Length $=\mathrm{L}$ min. $(\mathrm{ft})=$.					
Wall Height $=\quad \mathrm{h}(\mathrm{ft})=$.					
Tributary Dead Load $=\quad \mathrm{DL}(\mathrm{psf})=10.0$					
Tributary Width $=$ TW $(\mathrm{ft})=$.					
Wall Dead Load $=$ WDL $(\mathrm{psf})=8.0$					
Total Dead Load at Wall $=\mathrm{w}_{\text {DL }}$ (plf) $=164$					
Uplift Force at Tie Down for "L" noted above = 1702					
Minimum Holdown for each "L" noted above = HDU2					
Wall shear per lineal foot $=$ $v($ plf $)=V / L=$ Nail Size $=10 d$ Ply Grade $=C D / O S B$					
Use SW CD/OSB w/ 10d@ 6"o.c.	(Capacity =	310 plf)	DCR =	0.74	

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*} \mathrm{Lmin}\right)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*} \operatorname{Lmin} 2 / 2\right]\right\} /\left(\operatorname{Lmin}-1^{\prime}\right)=1702$ Holdown Type = HDU

LOWER FLOOR:

Total Wall Line Shear (ASD)=

SEISMIC	Sds $=$
V (lb)	$=704$
$\mathrm{~L}(\mathrm{ft})$	$=$

L total (ft.) $=9$
$\mathrm{L} \min .(\mathrm{ft})=$.
Wall Height $=\quad h(f t)=$.
Tributary Dead Load $=\quad$ DL $(p s f)=10.0$
Tributary Width =
TW (ft.) $=10$ Wall Dead Load $=$ WDL $(p s f)=8.0$
Total Dead Load at Wall $=\quad W_{\text {DL }}$ (plf) $=164$

Uplift Force at Tie Down for "L" noted above $=$| 4108 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDU4 | | | | | | | | |

Minimum Holdown for each "L" noted above $=$| Hel |
| :--- |

Wall shear per lineal foot $=\quad v($ plf $)=\mathrm{V} / \mathrm{L}=\quad 307 \quad$ <-including shear from wall above Nail Size = 10d

Ply Grade = CD / OSB

| Use SW $C D / O S B ~ w / 10 d @ 6 " 0 . c$. | (Capacity $=310$ plf) | DCR $=0.99$ |
| :--- | :--- | :--- | :--- |
| | | |

Max. Uplift Force at Tie Down $=U(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $)-\left[(0.6-.14 \text { Sds })^{*} w D L^{*}\right.$ Lmin2/2] $/\left(\operatorname{Lmin}-1^{\prime}\right)=4108$ Holdown Type = HDU

Use:	HDU4 (Capacity $=4565 \mathrm{lb})$	DCR $=0.90$

Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*} \mathrm{Lmin}\right)+\left[(1.0+.14 \mathrm{Sds})^{*} w D L^{*} \mathrm{Lmin} 2 / 2\right]\right\} /(\mathrm{Lmin})=6013$

ANALYSIS:			
DETERMINE FORCES \& SHEAR STRESS OF FREE-BODY INDIVIDUAL PANELS OF WALL (See diagram)			
INDIVIDUAL PANEL	$\mathrm{V}_{\text {dia }}=$		MAX
	89		SHEAR STRESS
	W (ft)	H (ft)	(plf)
1	6.00	2.00	72
2	1.50	2.00	156
3	1.50	2.00	156
4	2.00	2.00	39
5	6.00	1.50	111
6	2.00	1.50	156
7	6.00	1.50	111
8	2.00	1.50	156
9	6.00	3.00	78
10	1.50	3.00	134
11	1.50	3.00	134
12	2.00	3.00	56
NO.	FORCE (lb)	NO.	FORCE (lb)
F1	434	F13	312
F2	234	F14	312
F3	78	F15	479
F4	312	F16	167
F5	668	F17	234
F6	234	F18	546
F7	234	F19	200
F8	312	F20	200
F9	145	F21	401
F10	167	F22	468
F11	234	F23	200
F12	78	F24	111
DETERMINE REQUIRED CAPACITY			
$\mathrm{v}_{\mathrm{b}}=156$ plf			
CHECK MAX SHEAR WALL DIMENSION RATIO			
$H / W=1.5$			

SHEARWALL DESIGN (GRIDLINE 1)

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $\left.)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*} \operatorname{Lmin} 2 / 2\right]\right\} /\left(\operatorname{Lmin}-1^{\prime}\right)=2096$ Holdown Type = HD

Use: HD2A	(Capacity $=2775 \mathrm{lb})$

Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $)+\left[(1.0+.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2]\} / (Lmin)= 2185

LOWER FLOOR:

Total Wall Line Shear (ASD)=

SEISMIC	Sds $=1.2$
V (lb)	$=1092$
$\mathrm{~L}(\mathrm{ft})$	$=10$
10	4

L total $(\mathrm{ft})=$.
L min. (ft.) $=4$
$\mathrm{h}(\mathrm{ft})=$.
Tributary Dead Load =
$D L(\mathrm{psf})=12.8$
Tributary Width =
TW (ft.) = 10
WDL (psf) $=8.0$
Total Dead Load at Wall $=\quad W_{\text {DL }}$ (plf) $=191.5$

Uplift Force at Tie Down for "L" noted above $=$| 3635 | 5024 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDU4 | HDU5 | | | | | | | |

Minimum Holdown for each "L" noted above $=$| |
| :--- |

Wall shear per lineal foot $=\quad v($ plf $)=\mathrm{V} / \mathrm{L}=\quad 295 \quad$ <-including shear from wall above Nail Size = 10d

Ply Grade = CD / OSB

| Use SW $C D / O S B ~ w / 10 d @ 6 " o . c$. | (Capacity $=310$ plf) | DCR $=0.95$ |
| :--- | :--- | :--- | :--- |

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2] $/\left(\operatorname{Lmin}-1^{\prime}\right)=5024$
Holdown Type = HDU

SHEARWALL DESIGN (GRIDLINE 3)

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*} \mathrm{Lmin}\right)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*} \operatorname{Lmin} 2 / 2\right]\right\} /\left(\operatorname{Lmin}-1^{\prime}\right)=1907$ Holdown Type = HD

Use: HD2A	(Capacity $=2775 \mathrm{lb})$	DCR $=0.69$
Max. Comp Force at End Post $=\mathrm{C}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} h^{*}\right.\right.$ Lmin $)+\left[(1.0+.14 \mathrm{Sds})^{*} \mathrm{wDL}^{*}\right.$ Lmin2/2] $/($ Lmin $)=2376$		

LOWER FLOOR:

Total Wall Line Shear (ASD)=

SEISMIC	Sds $=1.2$
V (lb)	$=1092$
$\mathrm{~L}(\mathrm{ft})$	$=7.5$
	6

L total $(\mathrm{ft})=$.
L min. $(\mathrm{ft})=$.
$\mathrm{h}(\mathrm{ft})=$.
Tributary Dead Load =
$D L(\mathrm{psf})=10.0$
Tributary Width =
TW (ft.) = 10
WDL (psf) $=8.0$
$w_{\text {DL }}$ (plf) $=164$

Uplift Force at Tie Down for "L" noted above $=$| 4292 | 4591 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| HDU4 | HDU5 | | | | | | | |

Minimum Holdown for each "L" noted above $=$| | |
| :--- | :--- |

Wall shear per lineal foot $=\quad v($ plf $)=\mathrm{V} / \mathrm{L}=\quad 306 \quad$ <-including shear from wall above
Nail Size = 10d
Ply Grade = CD / OSB

| Use SW $C D / O S B ~ w / 10 d @ 6 " o . c$. | (Capacity $=310$ plf) | DCR $=0.99$ |
| :--- | :--- | :--- | :--- |

Max. Uplift Force at Tie Down $=\mathrm{U}(\mathrm{lb})=\left\{\left(\mathrm{v}^{*} \mathrm{~h}^{*}\right.\right.$ Lmin $)-\left[(0.6-.14 \mathrm{Sds})^{*} w D L^{*}\right.$ Lmin2/2] $/\left(\operatorname{Lmin}-1^{\prime}\right)=4591$
Holdown Type = HDU

3rd FLOOR FRAMING DESIGN

3rd FLOOR FRAMING LAYOUT:

For Design:

1. Assume Loading

$\mathrm{DL}=$	10.7	psf (girder)
$\mathrm{DL}=$	8	psf (joist)
$\mathrm{LL}=$	40	psf

Floor Loading:

Beam 1:

Dead Load =	8
Live Load =	40
Trib Area =	1.33
$\mathrm{Wdl}=$	10.906
WII =	53.2

Therefore, provide $2 \times 10 @ 16$ " oc See Enercalc next page

Beam 2:

Floor Loading:

Dead Load	$=$	11	psf
Live Load	$=$	40	psf
Trib Area	$=$	2	feet
Wdl	$=21.4$	plf	
WII	$=$	80	plf

Therefore, provide $31 / 2 \times 14$ PSL
Roof Loading:
See Enercal next page

Dead Load	$=$	13	psf
Live Load	$=$	20	psf
Trib Area	$=$	6	feet
Wdl	$=76.527$	plf	
WII	$=120$	plf	

Wall Weight:

Dead Load	$=$	10
Height	psf	
wwall		8
feet		
	80	plf

Beam 3:

Therefore, provide 3 1/2 x 9 1/4 PSL
See Enercalc next page

Beam 4:

Therefore, provide $31 / 2 \times 11$ 7/8 PSL
See Enercalc next page

Floor Loading:
Floor Loading:

$$
\begin{array}{rccl}
\text { Dead Load } & = & 8 & \mathrm{psf} \\
\text { Live Load } & = & 40 & \mathrm{psf} \\
\text { Trib Area } & = & 2 & \\
\text { feet } \\
\mathrm{WdI} & = & 16 & \\
\mathrm{WII} & = & 80 & \mathrm{plf}
\end{array}
$$

Roof Loading:

$$
\begin{array}{rccc}
\text { Dead Load } & =13 & \mathrm{psf} \\
\text { Live Load } & = & 20 & \text { psf } \\
\text { Trib Area } & = & 5 & \text { feet }
\end{array}
$$

$$
\mathrm{Wdl}=63.773 \mathrm{plf}
$$

$$
\mathrm{WII}=100 \mathrm{plf}
$$

Wall Weight:

Dead Load	$=$	10
Height	psf	
wwall		8
feet		
	80	plf

Dead Load $=11$ psf Live Load $=40$ psf Trib Area $=2$ feet

$$
\begin{array}{rll}
\mathrm{WdI} & = & 21 \\
\mathrm{plf} & = & 80
\end{array} \mathrm{plf}
$$

Roof Loading:

Dead Load	$=$	13	psf
Live Load	$=$	20	psf
Trib Area	$=$	5	feet
Wdl	$=$	64	plf
WII	$=$	100	plf

Wall Weight:
Dead Load $=10$ psf Height $=8$ feet wwall $=80$ plf

Beam 5:

Roof Loading:

Dead Load	$=$	13	psf
Live Load	$=$	20	psf
Trib Area	$=$	2	feet
WdI	$=$	26	plf
WII	$=$	40	plf

Therefore, provide 2x8 @ 24" oc
See Enercalc next page

Floor Loading:

Beam 6:

*For design

1. Special seismic load combination per ASCE07-16 section 12.4.3.2 applies Omega $=2.5$

Therefore, provide $31 / 2 \times 11$ 1/4 PSL
See Enercalc next page

Dead Load	$=$	11	psf
Live Load	$=$	40	psf
Trib Area	$=$	8	feet
Wdl	$=$	86	plf
WII	$=$	320	plf

Seismic Point Load:
Psesimic $=1588 \mathrm{lbs}$
*per Enercalc beam design

Wall Weight:
Dead Load $=10$ psf
Height = 8 feet
Trib Length $=5$ feet
Pwall $=85$ lbs
Roof Loading:

Dead Load	$=11$	psf
Live Load	$=$	20
psf		
Trib Area	$=$	6
feet		
Trib Length	$=10$	feet
Pdl	$=642$	
		lbs

3RD FLOOR BEAM - B1

Wood Beam

Lic. : : KW-06012032
DESCRIPTIO 1214 30th St - 3rd Floor Beam 1

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0110, \mathrm{~L}=0.05320$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)

Maximum Forces \& Stresses for Load Combination															
Load Combination	Max Stress Ratios			$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{i}	C_{r}	C_{m}	C ${ }_{\text {t }}$	C_{L}	Moment Values			Shear Values		
Segment Length Span \#	M	V	$\mathrm{C}_{\text {d }}$							M	fb	F'b	V	fv	F'v
$+\mathrm{D}+\mathrm{H}$												0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.137	0.056	0.90	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1309.28	0.08	9.10	162.00
Length $=0.04927 \mathrm{ft} 1$	0.002	0.056	0.90	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1309.28	0.08	9.10	162.00
+D+L+H				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.590	0.243	1.00	1.100	1.00	1.15	1.00	1.00	1.00	1.53	858.92	1454.75	0.40	43.67	180.00
Length $=0.04927 \mathrm{ft} 1$	0.009	0.243	1.00	1.100	1.00	1.15	1.00	1.00	1.00	0.02	12.49	1454.75	0.40	43.67	180.00
+D+Lr+H				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.098	0.040	1.25	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1818.44	0.08	9.10	225.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.040	1.25	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1818.44	0.08	9.10	225.00
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.107	0.044	1.15	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1672.96	0.08	9.10	207.00
Length $=0.04927 \mathrm{ft} 1$	0.002	0.044	1.15	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1672.96	0.08	9.10	207.00
+D+0.750Lr $+0.750 \mathrm{~L}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00

3RD FLOOR BEAM - B1

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0210, \mathrm{~L}=0.080$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)
Uniform Load: $\mathrm{D}=0.080$, Tributary Width $=1.0 \mathrm{ft}$, (Wall Loading)
Uniform Load: $\mathrm{D}=0.0730, \mathrm{Lr}=0.120$, Tributary Width $=1.0 \mathrm{ft}$, (Roof Loading)

Maximum Forces \& Stresses for Load Combinations																
Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{i}	C_{r}	Cm_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
$+\mathrm{D}+\mathrm{H}$													0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.172	0.122	0.90	1.000	1.00	1.00	1.00	1.00	1.00	1.86	448.24	2610.00	0.69	31.95	261.00
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.222	0.158	1.00	1.000	1.00	1.00	1.00	1.00	1.00	2.67	642.98	2900.00	0.99	45.82	290.00
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.204	0.146	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.08	740.35	3625.00	1.14	52.76	362.50
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.134	0.096	1.15	1.000	1.00	1.00	1.00	1.00	1.00	1.86	448.24	3335.00	0.69	31.95	333.50
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.224	0.160	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.38	813.38	3625.00	1.25	57.97	362.50
+D+0.750L+0.750S+					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Wood Beam															
Lic. \#: KW-06012032													DRE Structural Design		
DESCRIPTIO 1214 30th St - 3rd Floor Beam 2															
Load Combination	Max Stre	ss Ratio									nt Values			ear Va	
Segment Length Span \#	M	V	C_{d}	$\mathrm{C}_{\text {F/N }}$	C_{i}	C_{r}	C_{m}	C_{t}	C_{L}	M	fb	F'b	V	fv	F'v
Length $=9.0 \mathrm{ft} \quad 1$	0.178	0.127	1.15	1.000	1.00	1.00	1.00	1.00	1.00	2.47	594.30	3335.00	0.91	42.35	333.50
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.097	0.069	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	448.24	4640.00	0.69	31.95	464.00
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.097	0.069	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	448.24	4640.00	0.69	31.95	464.00
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}$.				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.175	0.125	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.38	813.38	4640.00	1.25	57.97	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.128	0.091	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.47	594.30	4640.00	0.91	42.35	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}$.				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.128	0.091	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.47	594.30	4640.00	0.91	42.35	464.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad \mathbf{1}$	0.058	0.041	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.12	268.94	4640.00	0.41	19.17	464.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft} \quad 1$	0.058	0.041	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.12	268.94	4640.00	0.41	19.17	464.00

3RD FLOOR BEAM - B3

| Wood Beam |
| :--- | :--- |
| Lic. \#: KN--06012032 |

DESCRIPTIO 1214 30th St - 3rd Floor Beam 3

CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Analysis MethoAllowable Stress Design	$\mathrm{Fb}+$	2,900.0 psi	E : Modulus of Elasti	
Load CombinatiBC 2018	Fb -	2,900.0 psi	Ebend- xx	2,000.0ksi
	Fc- Prill	2,900.0 psi	Eminbend - x	1,016.54ksi
Wood Species iLevel Truss Joist	Fc - Perp	750.0 psi		
Wood Grade Parallam PSL 2.0E	Fv	290.0 psi		
Beam Bracing Beam is Fully Braced a	$\stackrel{\text { Ft }}{\text { kling }}$	2,025.0 psi	Density	45.070 pcf

Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0160, \mathrm{~L}=0.080$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)
Uniform Load: $\mathrm{D}=0.160$, Tributary Width $=1.0 \mathrm{ft}$, (Wall Loading)
Uniform Load : $\mathrm{D}=0.0610, \mathrm{Lr}=0.10$, Tributary Width $=1.0 \mathrm{ft}$, (Roof Loading)

Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{1}	Cr_{r}	C_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
$+\mathrm{D}+\mathrm{H}$													0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.230	0.164	0.90	1.000	1.00	1.00	1.00	1.00	1.00	2.50	601.60	2610.00	0.93	42.88	261.00
+ $\mathrm{D}+\mathrm{L}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.275	0.196	1.00	1.000	1.00	1.00	1.00	1.00	1.00	3.31	796.34	2900.00	1.22	56.75	290.00
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.233	0.166	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.51	845.03	3625.00	1.30	60.22	362.50
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.180	0.129	1.15	1.000	1.00	1.00	1.00	1.00	1.00	2.50	601.60	3335.00	0.93	42.88	333.50
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=9.0 \mathrm{ft}$	1	0.257	0.183	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.87	930.23	3625.00	1.43	66.30	362.50
+ D $+0.750 \mathrm{~L}+0.750 \mathrm{~S}+$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Wood Beam

Lic. \#: KW-06012032
DESCRIPTIO 1214 30th St - 3rd Floor Beam 3

S Only
W Only
E Only
H Only

3RD FLOOR BEAM - B4

Wood Beam	
Lic. \#:KW-06012032	Dre structural Design
DESCRIPTIO 1214 30th St - 3rd Floor Beam 4	
CODE REFERENCES	

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Applied Loads Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0160, \mathrm{~L}=0.080$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)
Uniform Load: $\mathrm{D}=0.160$, Tributary Width $=1.0 \mathrm{ft}$, (Wall Loading)
Uniform Load: $\mathrm{D}=0.0610, \mathrm{Lr}=0.10$, Tributary Width $=1.0 \mathrm{ft}$, (Roof Loading)

Load Combination	Max Stress Ratios			$\mathrm{C}_{\mathrm{F} / \mathrm{N}}$	C_{i}	C_{r}	C_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
Segment Length Span \#	M	V	$\mathrm{C}_{\text {d }}$							M	fb	Fb	V	fv	FV
+D+H												0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.519	0.264	0.90	1.000	1.00	1.00	1.00	1.00	1.00	5.63	1,353.60	2610.00	1.49	68.83	261.00
Length $=0.04927 \mathrm{ft} 1$	0.008	0.264	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.08	19.69	2610.00	1.49	68.83	261.00
+D+L+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.618	0.314	1.00	1.000	1.00	1.00	1.00	1.00	1.00	7.45	1,791.77	2900.00	1.97	91.11	290.00
Length $=0.04927 \mathrm{ft} 1$	0.009	0.314	1.00	1.000	1.00	1.00	1.00	1.00	1.00	0.11	26.06	2900.00	1.97	91.11	290.00
+D+Lr+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.525	0.267	1.25	1.000	1.00	1.00	1.00	1.00	1.00	7.91	1,901.32	3625.00	2.09	96.68	362.50
Length $=0.04927 \mathrm{ft} 1$	0.008	0.267	1.25	1.000	1.00	1.00	1.00	1.00	1.00	0.12	27.66	3625.00	2.09	96.68	362.50
+D+S+H				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.406	0.206	1.15	1.000	1.00	1.00	1.00	1.00	1.00	5.63	1,353.60	3335.00	1.49	68.83	333.50

3RD FLOOR BEAM - B4

Wood Beam															
Lic. \# : KW-06012032													DRE Structural Design		
DESCRIPTIO 1214 30th St - 3rd Floor Beam 4															
Load Combination	Max Stre	ss Ratio									ent Values			Shear Va	
Segment Length Span \#	M	V	C_{d}	$\mathrm{C}_{\text {F/V }}$	C ${ }_{\text {i }}$	C_{r}	$\mathrm{C}_{\text {m }}$	C_{t}	C_{L}	M	fb	Fb	V	fv	Fv
Length $=0.04927 \mathrm{ft} 1$	0.006	0.206	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.08	19.69	3335.00	1.49	68.83	333.50
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.577	0.294	1.25	1.000	1.00	1.00	1.00	1.00	1.00	8.71	2,093.02	3625.00	2.30	106.42	362.50
Length $=0.04927 \mathrm{ft} 1$	0.008	0.294	1.25	1.000	1.00	1.00	1.00	1.00	1.00	0.13	30.44	3625.00	2.30	106.42	362.50
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.504	0.256	1.15	1.000	1.00	1.00	1.00	1.00	1.00	7.00	1,682.23	3335.00	1.85	85.54	333.50
Length $=0.04927 \mathrm{ft} 1$	0.007	0.256	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.10	24.47	3335.00	1.85	85.54	333.50
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.292	0.148	1.60	1.000	1.00	1.00	1.00	1.00	1.00	5.63	1,353.60	4640.00	1.49	68.83	464.00
Length $=0.04927 \mathrm{ft} 1$	0.004	0.148	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.08	19.69	4640.00	1.49	68.83	464.00
$+D+0.70 E+H$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
$\text { Length }=13.451 \mathrm{ft} \quad 1$	0.292	0.148	1.60	1.000	1.00	1.00	1.00	1.00	1.00	5.63	1,353.60	4640.00	1.49	68.83	464.00
Length $=0.04927 \mathrm{ft} 1$	0.004	0.148	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.08	19.69	4640.00	1.49	68.83	464.00
$+\mathrm{D}+0.750 \mathrm{~L}++0.750 \mathrm{~L}+0.450 \mathrm{~W}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.451	0.229	1.60	1.000	1.00	1.00	1.00	1.00	1.00	8.71	2,093.02	4640.00	2.30	106.42	464.00
Length $=0.04927 \mathrm{ft} 1$	0.007	0.229	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.13	30.44	4640.00	2.30	106.42	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}-$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.363	0.184	1.60	1.000	1.00	1.00	1.00	1.00	1.00	7.00	1,682.23	4640.00	1.85	85.54	464.00
Length $=0.04927 \mathrm{ft} 1$	0.005	0.184	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.10	24.47	4640.00	1.85	85.54	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.363	0.184	1.60	1.000	1.00	1.00	1.00	1.00	1.00	7.00	1,682.23	4640.00	1.85	85.54	464.00
Length $=0.04927 \mathrm{ft} 1$	0.005	0.184	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.10	24.47	4640.00	1.85	85.54	464.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \quad 1$	0.175	0.089	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.38	812.16	4640.00	0.89	41.30	464.00
Length $=0.04927 \mathrm{ft} 1$	0.003	0.089	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.05	11.81	4640.00	0.89	41.30	464.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
$\text { Length }=13.451 \mathrm{ft} \quad 1$	0.175	0.089	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.38	812.16	4640.00	0.89	41.30	464.00
Length $=0.04927 \mathrm{ft} 1$	0.003	0.089	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.05	11.81	4640.00	0.89	41.30	464.00

Load Combination	Span	Max. "-" Defl Loca	ation in Span Load Combination	Max. "+" Defl Location in Span
+D+0.750Lr $+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$	1	0.6222	6.799	0.00000 .000
Vertical Reactions		Support notation : Far left is \#'		Values in KIPS
Load Combination		Support 1 Support 2		
Overall MAXimum		2.579	2.579	
Overall MINimum		0.540	0.540	
+D+H		1.668	1.668	
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$		2.208	2.208	
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$		2.343	2.343	
+D+S+H		1.668	1.668	
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$		2.579	2.579	
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$		2.073	2.073	
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$		1.668	1.668	
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$		1.668	1.668	
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$		2.579	2.579	
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$		2.073	2.073	
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$		2.073	2.073	
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		1.001	1.001	
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		1.001	1.001	
D Only		1.668	1.668	
Lr Only		0.675	0.675	
L Only		0.540	0.540	
S Only				
W Only				
E Only				
H Only				

3RD FLOOR BEAM - B5

Applied Loads		Service loads entered. Load Factors will be applied for calculations.				
Beam self weight calculated and added to loads						
Uniform Load : $\mathrm{D}=0.0240, \mathrm{Lr}=0.040$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)						
DESIGN SUMMARY						Design OK
Maximum Bending Stress Ratio	=	0.244: 1		mum Shear Stress Ratio	=	0.139 : 1
Section used for this span		2x8		Section used for this span		2x8
	=	484.78psi			=	31.27 psi
	=	1,983.75psi			=	225.00 psi
		$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$		Load Combination		+D+Lr+H
Location of maximum on span	=	$4.000 \mathrm{ft}$		Location of maximum on span	=	7.416 ft
Span \# where maximum occurs	$=$	Span \# 1		Span \# where maximum occurs	$=$	Span \# 1
Maximum Deflection						
Max Downward Transient Deflection		0.046 in		$2096>=360$		
Max Upward Transient Deflection		0.000 in		$0<360$		
Max Downward Total Deflection		0.076 in		$1263>=240$		
Max Upward Total Deflection		0.000 in		$0<240$		

Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	Ci	Cr_{r}	Cm	C_{t}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	Fb	V	fv	Fv
$+\mathrm{D}+\mathrm{H}$													0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.135	0.077	0.90	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	1428.30	0.09	12.42	162.00
+D+L+H					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.121	0.069	1.00	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	1587.00	0.09	12.42	180.00
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.244	0.139	1.25	1.200	1.00	1.15	1.00	1.00	1.00	0.53	484.78	1983.75	0.23	31.27	225.00
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.106	0.060	1.15	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	1825.05	0.09	12.42	207.00
+D+0.750Lr +0.750 L					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.208	0.118	1.25	1.200	1.00	1.15	1.00	1.00	1.00	0.45	411.72	1983.75	0.19	26.55	225.00
+D+0.750L+0.750S +					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Length $=8.0 \mathrm{ft}$	1	0.106	0.060	1.15	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	1825.05	0.09	12.42
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$					1.200	1.00	1.15	1.00	1.00	1.00		0.00	0.00	0.00	0.00

3RD FLOOR BEAM - B5

Wood Beam	
Lle. : : KW-06012032	
DESCRIPTIO 1214 30th St - 3rd Floor Beam 5	

DESCRIPTIO 1214 30th St - 3rd Floor Beam 5

M	Max Stress Ratios			$\mathrm{C}_{\text {F/V }}$	C_{i}	C_{r}	Cm	C_{t}	C_{L}	Moment Values			Shear Values		
Segment Length Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
Length $=8.0 \mathrm{ft} \quad 1$	0.076	0.043	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	2539.20	0.09	12.42	288.00
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.076	0.043	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	2539.20	0.09	12.42	288.00
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}$ -				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.162	0.092	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.45	411.72	2539.20	0.19	26.55	288.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+$				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.076	0.043	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	2539.20	0.09	12.42	288.00
+D+0.750L+0.750S+0.5250E.				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.076	0.043	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.21	192.55	2539.20	0.09	12.42	288.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.045	0.026	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.13	115.53	2539.20	0.05	7.45	288.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft} \quad 1$	0.045	0.026	1.60	1.200	1.00	1.15	1.00	1.00	1.00	0.13	115.53	2539.20	0.05	7.45	288.00

Overall Maximum Deflections

3RD FLOOR BEAM - B6

Wood Beam
Lic.\#:KW-06012032 1214 30th St - 3rd Floor Beam 6
DESCRIPTIO
CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10 Load Combination Set : IBC 2018				
Material Properties				
Analysis MethocAllowable Stress Design	$\mathrm{Fb}+$	2,900.0 psi	E : Modulus of Ela	
Load Combinatil BC 2018	Fb -	2,900.0 psi	Ebend- xx	2,000.0ksi
	Fc-Prll	2,900.0 psi	Eminbend - x	1,016.54 ksi
Wood Species iLevel Truss Joist	Fc - Perp	750.0 psi		
Wood Grade Parallam PSL 2.0E	Fv	290.0 psi		
	Ft	2,025.0 psi	Density	45.070 pcf

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0880, \mathrm{~L}=0.320$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Loading)
Point Load: $\mathrm{D}=0.6420, \mathrm{Lr}=1.20, \mathrm{E}=1.588 \mathrm{k} @ 6.50 \mathrm{ft}$, (Roof Point Loads)
Point Load: $\mathrm{D}=0.10 \mathrm{k} @ 6.50 \mathrm{ft}$, (Wall Point Load)

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	$=$	0.256: 1 M	Maximum Shear Stress Ratio	=	0.280 : 1
		3.5×11.25	Section used for this span		3.5×11.25
	=	743.50 psi		$=$	129.69 psi
	$=$	2,900.00 psi		$=$	464.00 psi
Load Combination		+D+L	Load Combination +	+1.126	+ $+0.750 \mathrm{~L}+1.313 \mathrm{E}$
Location of maximum on span	=	4.653 ft	Location of maximum on span		7.569 ft
Span \# where maximum occurs	$=$	Span \# 1	Span \# where maximum occurs	s	Span \# 1
Maximum Deflection					
Max Downward Transient Deflection		0.046 in Ratio $=$	$=2240>=360$		
Max Upward Transient Deflection		0.000 in Ratio $=$	$=0<360$		
Max Downward Total Deflection		0.077 in Ratio $=$	$=1319>=240$		
Max Upward Total Deflection		0.000 in Ratio $=$	$=0<240$		

Maximum Forces \& Stresses for Load Combinations

Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{N}}$	C_{i}	C_{r}	Cm	C_{1}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	FV
D Only													0.00	0.00	0.00	0.00
Length $=8.50 \mathrm{ft}$	1	0.112	0.131	0.90	1.000	1.00	1.00	1.00	1.00	1.00	1.80	292.57	2610.00	0.90	34.30	261.00
+D+L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.50 \mathrm{ft}$	1	0.256	0.258	1.00	1.000	1.00	1.00	1.00	1.00	1.00	4.57	743.50	2900.00	1.96	74.77	290.00
+D+Lr					1.000	1.00	1.00	1.00	1.00	1.00			0 ००	000	0.00	\bigcirc ก 0

					...v-	\cdots	\cdots	\cdots	...	*..			\checkmark uv	v.	v.	v.v
Length $=8.50 \mathrm{ft}$	1	0.162	0.191	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.62	588.14	3625.00	1.82	69.26	362.50
+D+0.750Lr +0.750 L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.50 \mathrm{ft}$	1	0.221	0.251	1.25	1.000	1.00	1.00	1.00	1.00	1.00	4.93	802.11	3625.00	2.39	90.87	362.50
+D+0.750L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.50 \mathrm{ft}$	1	0.188	0.194	1.15	1.000	1.00	1.00	1.00	1.00	1.00	3.86	627.45	3335.00	1.70	64.65	333.50
+1.168D+1.750E					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

3RD FLOOR BEAM - B6

2nd FLOOR FRAMING DESIGN

2nd FLOOR FRAMING LAYOUT:

For Design:

1. Assume Loading

$$
\begin{array}{rll}
\mathrm{DL} & = & 10.7 \\
\mathrm{psf} \text { (girder) } \\
\mathrm{DL} & = & 8.2 \\
\mathrm{LL} & = & 40
\end{array} \mathrm{psf} \text { (joist) }
$$

Floor Loading:

Beam 1:

```
Dead Load = 8 psf
    Live Load = 40 psf
    Trib Area = 1.33 feet
    Wdl = 10.906 plf
    WII= 53.2 plf
```

Therefore, provide 2×10 @ 16" OC
See Enercalc next page

Beam 2:

Floor Loading:

Therefore, provide $31 / 2 \times 14$ PSL
See Enercal next page

Beam 3:

Floor Loading:

Dead Load	$=$	8
Live Load	psf	
Trib Area	$=1.33$	psf
		feet
Wdl	$=$	11
WII	$=$	
	79.8	plf

Therefore, provide 2x8 @ 16" oc
See next page for Enercalc

$$
\mathrm{WII}=79.8 \quad \mathrm{plf}
$$

Beam 4:

Floor Loading:

Dead Load	$=$	11	psf
Live Load	$=$	40	psf
Trib Area	$=$	4	feet
Wdl	$=$	43	plf
WII	$=$	160	plf

Stair Stringer Reaction:
Dead Load $=11$ psf Live Load $=40$ psf Trib Area $=2$ feet
Trib Length $=5$ feet
$\mathrm{Pdl}=107 \mathrm{lbs}$
$\mathrm{PII}=400 \mathrm{lbs}$

Beam 5:

Wall Loading:

Floor Loading:

Dead Load	$=$	11	psf
Live Load	$=$	40	psf
Trib Area	$=$		
feet			

Beam 6:

$\begin{array}{rcc}\text { Floor Loading: } & & \\ \text { Dead Load } & = & 8 \\ \text { Live Load } & = & 60 \\ \text { psf } \\ \text { Trib Area } & = & 4 \\ \text { feet } \\ \text { Wdl } & & 32.8 \\ \text { plf } \\ \mathrm{WII} & = & 240\end{array}$

Wall Loading:

$$
\begin{array}{rlll}
\text { Dead Load } & =10 & \text { psf } \\
\text { Trib Area } & = & 16 & \\
\text { feet }
\end{array}
$$

Beam 5 Reaction:

$$
\begin{array}{rcc}
\mathrm{Pdl} & =586 & \mathrm{lbs} \\
\mathrm{PII} & =1026 & \mathrm{lbs}
\end{array}
$$

Load Combination Segment Length Span \#	Max Stress Ratios			$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{i}	C_{r}	C_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
	M	V	C_{d}							M	fb	F'b	V	fv	F'v
+ D+H												0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \mathbf{1}$	0.137	0.056	0.90	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1309.28	0.08	9.10	162.00
Length $=0.04927 \mathrm{ft} 1$	0.002	0.056	0.90	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1309.28	0.08	9.10	162.00
+D+L+H				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.590	0.243	1.00	1.100	1.00	1.15	1.00	1.00	1.00	1.53	858.92	1454.75	0.40	43.67	180.00
Length $=0.04927 \mathrm{ft} 1$	0.009	0.243	1.00	1.100	1.00	1.15	1.00	1.00	1.00	0.02	12.49	1454.75	0.40	43.67	180.00
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \mathbf{1}$	0.098	0.040	1.25	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1818.44	0.08	9.10	225.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.040	1.25	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1818.44	0.08	9.10	225.00
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.107	0.044	1.15	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	1672.96	0.08	9.10	207.00
Length $=0.04927 \mathrm{ft} 1$	0.002	0.044	1.15	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	1672.96	0.08	9.10	207.00
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Wood Beam															
Lic. \# : KW-06012032													DRE Structural Design		
DESCRIPTIO 1214 30th St - 2nd Floor Beam 1															
Load Combination Max Stress Ratios										Moment Values			Shear Values		
Segment Length Span \#	M	V	C_{d}	$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C ${ }_{\text {i }}$	Cr_{r}	C_{m}	C_{t}	C_{L}	M	fb	F'b	V	fv	Fv
Length $=13.451 \mathrm{ft} 1$	0.379	0.156	1.25	1.100	1.00	1.15	1.00	1.00	1.00	1.23	688.94	1818.44	0.32	35.03	225.00
Length $=0.04927 \mathrm{ft} 1$	0.006	0.156	1.25	1.100	1.00	1.15	1.00	1.00	1.00	0.02	10.02	1818.44	0.32	35.03	225.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} \mathbf{1}$	0.412	0.169	1.15	1.100	1.00	1.15	1.00	1.00	1.00	1.23	688.94	1672.96	0.32	35.03	207.00
Length $=0.04927 \mathrm{ft} 1$	0.006	0.169	1.15	1.100	1.00	1.15	1.00	1.00	1.00	0.02	10.02	1672.96	0.32	35.03	207.00
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.077	0.032	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	2327.60	0.08	9.10	288.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.032	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	2327.60	0.08	9.10	288.00
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.077	0.032	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.32	179.01	2327.60	0.08	9.10	288.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.032	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.00	2.60	2327.60	0.08	9.10	288.00
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}$.				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.296	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	1.23	688.94	2327.60	0.32	35.03	288.00
Length $=0.04927 \mathrm{ft} 1$	0.004	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.02	10.02	2327.60	0.32	35.03	288.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.296	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	1.23	688.94	2327.60	0.32	35.03	288.00
Length $=0.04927 \mathrm{ft} 1$	0.004	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.02	10.02	2327.60	0.32	35.03	288.00
+D+0.750L+0.750S+0.5250E.				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.296	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	1.23	688.94	2327.60	0.32	35.03	288.00
Length $=0.04927 \mathrm{ft} 1$	0.004	0.122	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.02	10.02	2327.60	0.32	35.03	288.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.046	0.019	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.19	107.41	2327.60	0.05	5.46	288.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.019	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.00	1.56	2327.60	0.05	5.46	288.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.100	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=13.451 \mathrm{ft} 1$	0.046	0.019	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.19	107.41	2327.60	0.05	5.46	288.00
Length $=0.04927 \mathrm{ft} 1$	0.001	0.019	1.60	1.100	1.00	1.15	1.00	1.00	1.00	0.00	1.56	2327.60	0.05	5.46	288.00
Overall Maximum Deflections															
Load Combination		an	Max. "-	- Defl	ocation	in Sp		Load	ombin			Max. "	efl L	ation in	Span
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$		1		. 3004		6.799									00
Vertical Reactions						Support notation : Far left is \#*						Values in KIPS			
Load Combination				Support 1 Support 2											
Overall MAXImum				0.454		0.454									
Overall MINimum				0.359		0.359									
$+\mathrm{D}+\mathrm{H}$				0.095		0.095									
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$				0.454		0.454									
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$				0.095		0.095									
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$				0.095		0.095									
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$				0.364		0.364									
+D+0.750L+0.750S+H				0.364		0.364									
+D+0.60W + H				0.095		0.095									
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				0.095		0.095									
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}$	$\mathrm{N}+\mathrm{H}$			0.364		0.364									
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}$	$\mathrm{N}+\mathrm{H}$			0.364		0.364									
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250$	$\mathrm{E}+\mathrm{H}$			0.364		0.364									
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				0.057		0.057									
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				0.057		0.057									
D Only				0.095		0.095									
Lr Only															
L Only				0.359		0.359									
S Only															
W Only															
E Only															
H Only															

Wood Beam
DESCRIPTIO 1214 30th St-2nd Floor Beam 2
CODE REFERENCES
Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0430, \mathrm{~L}=0.160$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)

Lic. s : KW-06012032													DRE Structural Design		
DESCRIPTIO 1214 30th St - 2nd Floor Beam 2															
Load Combination	Max Stre	ss Ratio								Mom	nt Values			ear Val	
Segment Length Span \#	M	V	C_{d}	$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{i}	C_{r}	C_{m}	C_{1}	C_{L}	M	fb	F'b	V	fv	F'v
Length $=11.0 \mathrm{ft} \quad 1$	0.079	0.031	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.78	126.69	1600.00	0.24	8.98	288.00
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \quad 1$	0.079	0.031	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.78	126.69	1600.00	0.24	8.98	288.00
+D+0.750Lr $+0.750 \mathrm{~L}+0.450 \mathrm{~W}$.				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \quad 1$	0.264	0.104	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.59	421.70	1600.00	0.79	29.91	288.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \quad 1$	0.264	0.104	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.59	421.70	1600.00	0.79	29.91	288.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}$.				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \quad 1$	0.264	0.104	1.60	1.000	1.00	1.00	1.00	1.00	1.00	2.59	421.70	1600.00	0.79	29.91	288.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \quad 1$	0.048	0.019	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.47	76.02	1600.00	0.14	5.39	288.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=11.0 \mathrm{ft} \mathbf{1}$	0.048	0.019	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.47	76.02	1600.00	0.14	5.39	288.00

Overall Maximum Deflections									
Load Combination	Span	Max. "-" Defl Location in Span	Load Combination	Max. "+					
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$	1	0.0993	5.540	0.0000					

Load Combination Segment Length	Max Stress Ratios				C_{FN}	C_{i}	C_{r}	C_{m}	C_{1}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	Fv
+D+H													0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.068	0.039	0.90	1.200	1.00	1.15	1.00	1.00	1.00	0.11	97.58	1428.30	0.05	6.29	162.00
+D+L+H					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.430	0.244	1.00	1.200	1.00	1.15	1.00	1.00	1.00	0.75	682.03	1587.00	0.32	43.99	180.00
+D+Lr+H					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.049	0.028	1.25	1.200	1.00	1.15	1.00	1.00	1.00	0.11	97.58	1983.75	0.05	6.29	225.00
+D+S+H					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.053	0.030	1.15	1.200	1.00	1.15	1.00	1.00	1.00	0.11	97.58	1825.05	0.05	6.29	207.00
+D+0.750Lr+0.750L+H					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.270	0.154	1.25	1.200	1.00	1.15	1.00	1.00	1.00	0.59	535.92	1983.75	0.25	34.56	225.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.294	0.167	1.15	1.200	1.00	1.15	1.00	1.00	1.00	0.59	535.92	1825.05	0.25	34.56	207.00
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$					1.200	1.00	1.15	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Wood Beam
Lic. a:KW-06012032 1214 30th St - 2nd Floor Beam 4
DESCRIPTIO
CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Applied Loads
Service loads entered. Load Factors will be applied for calculations.
Beam self weight calculated and added to loads
Uniform Load: $\mathrm{D}=0.0430, \mathrm{~L}=0.160$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load)
Point Load: $\mathrm{D}=0.1070, \mathrm{~L}=0.40 \mathrm{k} @ 5.0 \mathrm{ft}$
Point Load: $\mathrm{D}=0.1070, \mathrm{~L}=0.40 \mathrm{k} @ 2.0 \mathrm{ft}$

Maximum Forces \& Stresses for Load Combinations																
Load Combination	Max Stress Ratios				$\mathrm{C}_{\mathrm{FN} /}$	C_{i}	C_{r}	C_{m}	C_{t}	C_{L}	Moment Values			Shear Values		
Segment Length	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
$+\overline{\mathrm{D}+\mathrm{H}}$													0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.112	0.065	0.90	1.100	1.00	1.00	1.00	1.00	1.00	0.68	110.77	990.00	0.28	10.60	162.00
+D+L+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.439	0.258	1.00	1.100	1.00	1.00	1.00	1.00	1.00	2.97	482.62	1100.00	1.22	46.43	180.00
+D+Lr+H					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.081	0.047	1.25	1.100	1.00	1.00	1.00	1.00	1.00	0.68	110.77	1375.00	0.28	10.60	225.00
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.088	0.051	1.15	1.100	1.00	1.00	1.00	1.00	1.00	0.68	110.77	1265.00	0.28	10.60	207.00
+D+0.750Lr $+0.750 \mathrm{~L}+$					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.283	0.167	1.25	1.100	1.00	1.00	1.00	1.00	1.00	2.40	389.66	1375.00	0.98	37.48	225.00
+D+0.750L+0.750S+					1.100	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

Overall Maximum Deflections

Wood Beam
Lic. \#: :KW-06012032 1214 30th St - 2nd Floor Beam 5
DESCRIPTIO
CODE REFERENCES

Calculations per NDS 2015, IBC 2015, CBC 2016, ASCE 7-10
Load Combination Set : IBC 2018

Applied Loads		Service loads entered. Load Factors will be applied for calculations.			
Beam self weight calculated and added to loads					
Uniform Load: $\mathrm{D}=0.0430, \mathrm{~L}=0.160$, Tributary Width $=1.0 \mathrm{ft}$, (Floor Load) Uniform Load: $\mathrm{D}=0.160$, Tributary Width $=1.0 \mathrm{ft}$					
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	$=$	0.117. 1 M	Maximum Shear Stress Ratio	$=$	0.118 : 1
Section used for this span		3.5x9.25	Section used for this span		3.5×9.25
	=	339.22psi		=	34.36 psi
	=	2,900.00psi		=	290.00 psi
Load Combination		+D+L+H	Load Combination		+D+L+H
Location of maximum on span	=	2.750 ft	Location of maximum on span	=	4.737 ft
Span \# where maximum occurs		Span \# 1	Span \# where maximum occurs	$=$	Span \# 1
Maximum Deflection					
Max Downward Transient Deflection		0.007 in Ratio $=$	$=9196>=360$		
Max Upward Transient Deflection		0.000 in Ratio $=$	$=0<360$		
Max Downward Total Deflection		0.017 in Ratio $=$	$=3943>=240$		
Max Upward Total Deflection		0.000 in Ratio $=$	$=0<240$		

Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{N}}$	C_{i}	Cr_{r}	C_{m}	$\mathrm{C}_{\text {t }}$	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	$\mathrm{C}_{\text {d }}$							M	fb	F'b	V	fv	F'v
+ + +H													0.00	0.00	0.00	0.00
Length $=5.50 \mathrm{ft}$	1	0.074	0.075	0.90	1.000	1.00	1.00	1.00	1.00	1.00	0.81	193.76	2610.00	0.42	19.62	261.00
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=5.50 \mathrm{ft}$	1	0.117	0.118	1.00	1.000	1.00	1.00	1.00	1.00	1.00	1.41	339.22	2900.00	0.74	34.36	290.00
+D+Lr +H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=5.50 \mathrm{ft}$	1	0.053	0.054	1.25	1.000	1.00	1.00	1.00	1.00	1.00	0.81	193.76	3625.00	0.42	19.62	362.50
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=5.50 \mathrm{ft}$	1	0.058	0.059	1.15	1.000	1.00	1.00	1.00	1.00	1.00	0.81	193.76	3335.00	0.42	19.62	333.50
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=5.50 \mathrm{ft}$	1	0.084	0.085	1.25	1.000	1.00	1.00	1.00	1.00	1.00	1.26	302.85	3625.00	0.66	30.67	362.50
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00

| Wood Beam |
| :--- | :--- |
| Lic. : : KWW-06012032 |
| DESCRIPTIO 1214 30th St - 2nd Floor Beam 5 |

Load Combination Max	Max Stress Ratios			$\mathrm{C}_{\mathrm{F} / \mathrm{V}}$	C_{1}	C_{r}	C_{m}	$\mathrm{C}_{\text {t }}$	C_{L}	Moment Values			Shear Values		
Segment Length Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.042	0.042	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.81	193.76	4640.00	0.42	19.62	464.1
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.042	0.042	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.81	193.76	4640.00	0.42	19.62	464.1
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}$ -				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.065	0.066	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.26	302.85	4640.00	0.66	30.67	464.1
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.065	0.066	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.26	302.85	4640.00	0.66	30.67	464.1
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}$.				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.065	0.066	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.26	302.85	4640.00	0.66	30.67	464.1
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.025	0.025	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.48	116.26	4640.00	0.25	11.77	464.1
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.1
Length $=5.50 \mathrm{ft} \quad 1$	0.025	0.025	1.60	1.000	1.00	1.00	1.00	1.00	1.00	0.48	116.26	4640.00	0.25	11.77	464.1

Overall Maximum Deflections								
Load Combination	Span	Max. "-" Defl Location in Span	Load Combination	Max. "+" Defl Location in Span				
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$	1	0.0167	2.770	0.0000				

Applied Loads	Service loads entered. Load Factors will be applied for calculations.			
Beam self weight calculated and added to loads				
Load for Span Number 2				
Point Load: $\mathrm{D}=0.5860, \mathrm{~L}=0.440 \mathrm{k} @ 3.50 \mathrm{ft}$, (Floor Load)				
DESIGN SUMMARY				Design OK
Maximum Bending Stress Ratio	0.384:1 M	Maximum Shear Stress Ratio	=	0.238 : 1
Section used for this span	3.5x9.25	Section used for this span		3.5x9.25
	1,113.91 psi		$=$	69.11 psi
	2,900.00psi		$=$	290.00 psi
Load Combination	+D+L+H	Load Combination		+D+L+H
Location of maximum on span	8.000 ft	Location of maximum on span	=	8.000 ft
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs	$=$	Span \# 1
Maximum Deflection				
Max Downward Transient Deflection	0.077 in Ratio $=$	$=1086>=360$		
Max Upward Transient Deflection	-0.024 in Ratio $=$	$=4027>=360$		
Max Downward Total Deflection	0.226 in Ratio $=$	$=372>=240$		
Max Upward Total Deflection	-0.070 in Ratio $=$	$=1376>=240$		

Load Combination Segment Length	Max Stress Ratios				$\mathrm{C}_{\mathrm{F} / \mathrm{N}}$	C_{i}	C_{r}	Cm	C_{1}	C_{L}	Moment Values			Shear Values		
	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
$+\mathrm{D}+\mathrm{H}$													0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.285	0.187	0.90	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	2610.00	1.05	48.73	261.00
Length $=3.50 \mathrm{ft}$	2	0.285	0.187	0.90	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	2610.00	1.05	48.73	261.00
+D+L+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.384	0.238	1.00	1.000	1.00	1.00	1.00	1.00	1.00	4.63	1,113.91	2900.00	1.49	69.11	290.00
1 annth - 3 Fnft	?	$\bigcirc 384$	\bigcirc 238	1 n	1 n ก	1 n	1 nn	1 nn	1 n ก	1 กn	$4 \mathrm{F2}$	111201	sann nn	140	60.11	วงก กก

Lenyur $=0.00 \mathrm{~L}$	2	v.004	u.coo	1.vu	$1 . \mathrm{vu}$	1.vu	1.vu	1.vu	1.vu	1.vo	4.03	1,110.91	cyuv.uv	1.45	03.11	cyu.ue
+D+Lr+H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.205	0.134	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	3625.00	1.05	48.73	362.50
Length $=3.50 \mathrm{ft}$	2	0.205	0.134	1.25	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	3625.00	1.05	48.73	362.50
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.223	0.146	1.15	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	3335.00	1.05	48.73	333.50

2nd FLOOR BEAM - B6

| Wood Beam |
| :--- | :--- |
| Lic.\#:KW-06012032 |

Lic. : : KW-06012032
DESCRIPTIO 1214 30th St - 2nd Floor Beam 6

	Max Stress Ratios				$\mathrm{C}_{\text {F/V }}$	C_{i}	Cr_{r}	C_{m}	$\mathrm{C}_{\text {t }}$	C_{L}	Moment Values			Shear Values		
Segment Length	Span \#	M	V	C_{d}							M	fb	F'b	V	fv	F'v
Length $=3.50 \mathrm{ft}$	2	0.223	0.146	1.15	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	3335.00	1.05	48.73	333.50
+D+0.750Lr +0.750 L					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.282	0.177	1.25	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	3625.00	1.38	64.02	362.50
Length $=3.50 \mathrm{ft}$	2	0.282	0.177	1.25	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	3625.00	1.38	64.02	362.50
+D+0.750L+0.750S +					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.306	0.192	1.15	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	3335.00	1.38	64.02	333.50
Length $=3.50 \mathrm{ft}$	2	0.306	0.192	1.15	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	3335.00	1.38	64.02	333.50
+D+0.60W +H					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.160	0.105	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	4640.00	1.05	48.73	464.00
Length $=3.50 \mathrm{ft}$	2	0.160	0.105	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	4640.00	1.05	48.73	464.00
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.160	0.105	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	4640.00	1.05	48.73	464.00
Length $=3.50 \mathrm{ft}$	2	0.160	0.105	1.60	1.000	1.00	1.00	1.00	1.00	1.00	3.09	743.65	4640.00	1.05	48.73	464.00
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750$	450				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
Length $=3.50 \mathrm{ft}$	2	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$	450W+				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
Length $=3.50 \mathrm{ft}$	2	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}$	0.5250E-				1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
Length $=3.50 \mathrm{ft}$	2	0.220	0.138	1.60	1.000	1.00	1.00	1.00	1.00	1.00	4.25	1,021.34	4640.00	1.38	64.02	464.00
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.096	0.063	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	446.19	4640.00	0.63	29.24	464.00
Length $=3.50 \mathrm{ft}$	2	0.096	0.063	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	446.19	4640.00	0.63	29.24	464.00
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60$					1.000	1.00	1.00	1.00	1.00	1.00			0.00	0.00	0.00	0.00
Length $=8.0 \mathrm{ft}$	1	0.096	0.063	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	446.19	4640.00	0.63	29.24	464.00
Length $=3.50 \mathrm{ft}$	2	0.096	0.063	1.60	1.000	1.00	1.00	1.00	1.00	1.00	1.86	446.19	4640.00	0.63	29.24	464.00

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl Locat	in Span	Load Combination	Max. "+" Defl	in Span
	1	0.0000	0.000	$+\mathrm{D}+\mathrm{L}+\mathrm{H}$	-0.0697	4.648
+D+L+H	2	0.2256	3.500		0.0000	4.648
Vertical Reactions		Support notation : Far left is \#'			Values in KIPS	
Load Combination		Support 1 Support 2 Support 3				
Overall MAXimum		-0.539	2.241			
Overall MINimum		-0.346	0.633			
$+\mathrm{D}+\mathrm{H}$		-0.346	1.609			
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$		-0.539	2.241			
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$		-0.346	1.609			
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$		-0.346	1.609			
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$		-0.490	2.083			
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+\mathrm{H}$		-0.490	2.083			
+D+0.60W +H		-0.346	1.609			
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$		-0.346	1.609			
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$		-0.490	2.083			
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$		-0.490	2.083			
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$		-0.490	2.083			
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$		-0.208	0.965			
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$		-0.208	0.965			
D Only		-0.346	1.609			

New Foundation Layout

For Design:

1. See above for new footing layout.
2. Assume allowable soil pressure $=1500 \mathrm{psf}$ (code minimum)
3. Assume $1 / 3$ increase for short term loading
4. Check 2 locations

5. Check new shearwall along Grid B

$\mathrm{Pdl}=$	0.8	kips		
$\mathrm{Plr}=$	1.2	kips		
$\mathrm{mic}=$	0.397	kips	\quad	
:---:				
includes roof dead				
and live load				

3. Check new post on existing cont ftg (Grids $\mathrm{A} / 3$)

$\mathrm{Pdl}=$	0.44	kips		
$\mathrm{Plr}=$	0.8	kips		
$\mathrm{mic}=$		kips	\quad	includes roof dead
:---:				
and live load				

Eccentrically Loaded Footing Design

$P_{\text {wall/col }}=1,066 \mathrm{lbs}$

$$
\mathrm{d}_{1}=2.0 \mathrm{ft} \quad \mathrm{~d}_{2}=0.5 \mathrm{ft}
$$

Allowable Soil Pressure= 1500 psf
\square Short Term Loads(4/3 increase)

$$
\begin{array}{ll}
\mathrm{H}= & 1.5 \mathrm{ft} \\
\mathrm{~L}= & 1.5 \mathrm{ft} \\
\mathrm{~b}= & 1.0 \mathrm{ft}
\end{array}
$$

Weight of conc. $=150 \mathrm{pcf}$

$$
P_{\mathrm{ftg}}=338 \mathrm{lbs}
$$

$$
P_{\text {stem }}=0 \text { lbs } \quad I_{\text {ftg }}=0.3 \mathrm{ft} 4
$$

$$
P_{\text {slab }}=375 \mathrm{lbs}
$$

$$
P_{\text {total }}=1,779 \mathrm{lbs}
$$

Moment about center of footing $=\quad-15 \mathrm{lbs}-\mathrm{ft}$

$$
e=M / P=-0.01 \mathrm{ft} \quad O K
$$

$$
\mathrm{f}_{1}=1225 \mathrm{psf} \text { OK < } 1500 \mathrm{psf}
$$

$$
\mathrm{f}_{2}=1146 \mathrm{psf} \mathrm{OK}<1500 \mathrm{psf}
$$

Uniform bearing pressure form footing, stem and slab $=475 \mathrm{psf}$

Footing Design of Shear Wall Based on ACI 318-14

ANALYSIS

CHECK OVERTURNING FACTOR (CBC 1605.2, 1808.3.1, \& ASCE 7-16 12.13.4)

$$
\begin{array}{llccc}
\mathrm{F}=\mathrm{M}_{\mathrm{R}} / \mathrm{M}_{\mathrm{O}}= & 1.39 & > & 1.4 \times 0.75 / 0.9 & \text { for seismic } \\
\text { Where } & P_{f}= & 4.89375 & \text { kips (footing self weight) } & \text { [Satisfactory] } \\
& M_{0}=F(h+D)+M= & 58 \quad \text { ft-kips (overturning moment) } & \\
& M_{R}=\left(P_{r, D L}\right)\left(L_{1}+a\right)+P_{f}(0.5 L)+P_{w}\left(L_{1}+0.5 L_{w}\right)= & 81 & \text { ft-kips (resisting moment without live load) }
\end{array}
$$

CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN)

$$
\text { Where } \quad \mathrm{e}=1.61 \quad \mathrm{ft},<(\mathrm{L} / 6)
$$

CHECK FOOTING CAPACITY (STRENGTH DESIGN)

$$
\begin{aligned}
& \mathrm{P}=\left(\mathrm{P}_{\mathrm{r}, \mathrm{DL}}+\mathrm{P}_{\mathrm{r}, \mathrm{LL}}\right)+\mathrm{P}_{\mathrm{w}}+\mathrm{P}_{\mathrm{f}}=\quad 17.15 \quad \text { kips (total vertical net load) } \\
& M_{R}=\left(P_{r, D L}+P_{r, L L}\right)\left(L_{1}+a\right)+P_{f}(0.5 L)+P_{w}\left(L_{1}+0.5 L_{w}\right)=\quad 159 \quad f t-k i p s \text { (resisting moment with live load) } \\
& e=0.5 \mathrm{~L}-\left(\mathrm{M}_{\mathrm{R}}-\mathrm{M}_{\mathrm{O}}\right) / \mathrm{P}=1.61 \quad \mathrm{ft} \text { (eccentricity from middle of footing) } \\
& q_{M A X}=\left\{\begin{array}{ll}
\frac{P\left(1+\frac{6 e}{L}\right.}{B L}, & \text { for } e \leq \frac{L}{6} \\
\frac{2 P}{3 B(0.5 L-e)}, & \text { for } e>\frac{L}{6}
\end{array} \quad=1.25 \mathrm{ksf} \quad<\quad 4 / 3 \mathrm{q}_{\mathrm{a}}\right.
\end{aligned}
$$

Footing Design of Shear Wall Based on ACI 318-14

ANALYSIS

CHECK OVERTURNING FACTOR (CBC 1605.2, 1808.3.1, \& ASCE 7-16 12.13.4)

$$
\begin{array}{llccc}
\mathrm{F}=\mathrm{M}_{\mathrm{R}} / \mathrm{M}_{\mathrm{O}}= & 1.25 & > & 1.4 \times 0.75 / 0.9 & \text { for seismic } \\
\text { Where } & P_{f}= & 2.93625 & \text { kips (footing self weight) } & \text { [Satisfactory] } \\
& M_{0}=F(h+D)+M= & 21 \quad \text { ft-kips (overturning moment) } & \\
& M_{R}=\left(P_{r, D L}\right)\left(L_{1}+a\right)+P_{f}(0.5 L)+P_{w}\left(L_{1}+0.5 L_{w}\right)= & 26 \quad \text { ft-kips (resisting moment without live load) }
\end{array}
$$

CHECK SOIL CAPACITY (ALLOWABLE STRESS DESIGN)

$$
\text { Where } \quad \mathrm{e}=2.38 \quad \mathrm{ft},>(\mathrm{L} / 6)
$$

CHECK FOOTING CAPACITY (STRENGTH DESIGN)
$\begin{array}{lll}M_{u, 0}= & 1.4[F(h+D)+M]= & 29 \\ P_{u}= & 1.2\left(P_{r, D}+P_{f}+P_{w}\right)+0.5 P_{r, u}= & 7\end{array}$
$P_{u}=1.2\left(P_{r, D L}+P_{f}+P_{w}\right)+0.5 P_{r, L L}=7$ kips
$e_{u}=0.5 L-\left(M_{u, R}-M_{u, 0}\right) / P_{u}=3.59 \mathrm{ft}$

$$
q_{u, M A X}= \begin{cases}\frac{P_{u}\left(\jmath+\frac{6 e_{u}}{L}\right.}{B L}, & \text { for } e_{u} \leq \frac{L}{6} \\ \frac{2 P_{u}}{3 B\left(0.5 L-e_{u}\right)}, & \text { for } e_{u}>\frac{L}{6}\end{cases}
$$

35 ft-kips

$$
\begin{aligned}
& P=\left(P_{r, D L}+P_{r, L L}\right)+P_{w}+P_{f}=\quad 6.14 \quad \text { kips (total vertical net load) } \\
& M_{R}=\left(P_{r, D L}+P_{r, L L}\right)\left(L_{1}+a\right)+P_{f}(0.5 L)+P_{w}\left(L_{1}+0.5 L_{w}\right)=\quad \text { ft-kips (resisting moment with live load) } \\
& e=0.5 \mathrm{~L}-\left(\mathrm{M}_{\mathrm{R}}-\mathrm{M}_{\mathrm{O}}\right) / \mathrm{P}=2.38 \quad \mathrm{ft} \text { (eccentricity from middle of footing) } \\
& q_{M A X}=\left\{\begin{array}{ll}
\frac{P\left(1+\frac{6 e}{L}\right.}{B L}, & \text { for } e \leq \frac{L}{6} \\
\frac{2 P}{3 B(0.5 L-e)}, & \text { for } e>\frac{L}{6}
\end{array} \quad=1.29 \mathrm{ksf} \quad<\quad 4 / 3 \mathrm{q}_{\mathrm{a}}\right.
\end{aligned}
$$

$$
\text { Allowable DL + LL Soil Pressure }=\quad 1500
$$

18 psf Minimum Footing Depth =
Roof LL $=0$ psf

$$
\begin{array}{rcc}
\text { Roof DL } & =0 & \mathrm{psf} \\
\text { Floor DL } & =10.7 & \mathrm{psf} \\
\text { Wall DL } & =10 & \mathrm{psf}
\end{array}
$$

Column at A.5/3 (Interior Column)

Roof	$L_{1 A}=$	0.0	$\mathrm{L}_{2 \mathrm{~A}}=$	0.0	ft	$A=L_{1 A} * L_{2 A}=$	0.0	ft^{2}	LL =	0
Floor	$\mathrm{L}_{1 \mathrm{~B}}=$	10.0	$\mathrm{L}_{2 \mathrm{~B}}=$	12.0	ft	$A=L_{1 B} * L_{2 B}=$	120.0	ft^{2}	LL =	40
Wall	$\mathrm{h}=$	0.0	L =	0.0	ft	$A=h \times L=$	0.0			

Item	Area	Unit DL	Unit LL	Dead Load	Live Load	Earthquake Load	Total Load
Roof	0	0	0	0	0		0
Floor	120	10.7	40	440	800		1,240
Wall	0	10	0		0		
Earthquake						1,146	

$A_{\text {fTNG. }}=$	$\frac{2386}{1500}$	$1.591 \mathrm{ft}^{2}$		Use				
		2.250	ft^{2}	1.500	x	1.500	x 18 in	Deep Footing

Therefore, provide 2'x2'x18" deep footing
is adequated to support the new column load.

